& LIST

JFT/API

Programming Manual

Version 3.0.0

To contact the helpdesk nearest to you visit our website
www.list—group.com

http:\\www.list-group.com

Table of Contents

B I Y o PRSP
JETIADI INITOAUCTION ..o
FASTTIACK OVEIVIBW.....ceei ittt e e e ettt e e e e e e ettt e e e e 44 s sttt et e e e e e e s ab b e et e e e e e e e e s R bbbt e e e e e e e e e nsbte et e e e e e e e e nnsabbeeeeeeeeennnnnbenees
SYSIEMAICHITECIUNEOVEIVIEW.eeeiiieieeeeeeee ettt ettt e et e e e e e e et e e et e e et e aaaaaaaaaaaaaeas 5
A LS IPOINES e ————————————————————
S| I o Aot o =S 01| PP {
D= = D 1]] o 10] o PR ERPP TP
0] o PP
YU o T od] o= PRSP PPPRRTP PR
(O 18T 1= T TR
2 L 7= Tod 1 L P ERPR PP
(o] gl g =TouTo] gk >Ta o [@d0]] (=3 K= PEPPPTPTPPRRPP &
| N T L= 7= Y] USSP URRPURPPRI
AsynchronousCommuniCatioNMMOEL.............oooviiiiiiiii 9
LITECYCI. oo ——
D= = Y1V o o = PP PPRRT PRSPPI
(@1 =T e To W[T (Lo PERTR P
S| I o T =11V o T PP |
o o] = T [1 1S 1 | PP 1
Lo Yol G T [1Sy O L T ET o] o] 1o o SRS 11
Packaget.liSt.jft DAtaMOUEL............uuiii e e e ee e e e st s e s s ss e s s s s s s st sessssssnsssnessnssensnnnnnnneeees 11
HierarChyFOr PaCKagat. ISt Jfl...........uuiiiiiiieiieiieeeeeeeee e 12
Ta1C=T g = od=t o [T = 1] Y2 PPPPPPPPPPPPP 1
(10 RS o1 L = g = (ot 114 O = T PP PPPPPPPPPPP 13
NSt INTEITACEENTILY . ..o —— 1¢
It NSt INtErfaCEENTIEYFIEIC. bbbt e e es s s s s s s s s e s s ae s s s e s s eeeseeseeeseeeeeees 19
I NStft INtErfaCEENTItYKEY ... ———— 25
(10 RS o1 L o g = (o= I (=T O Yo L= P PSPPSR 26

it.list.jft InterfaceCommUuNICAtIONLIFECYCIE........uvviiieiiiiiiiieeeeeeeeeee e 31

It liSt.jft INterfaCEACHVItYLIFECYCIO.uviiiiiieeeeeeeeeeeeeeee e, 34

itlist.jft INterfaCeENtItYClaSSQUELY........uuiiieiiieeieeeeeee ettt 36
1o R o1 L1 G g = (o= 1 (=T P PP PPP PRSPPI 3¢
(1o RS oL gL = g = (ot 11 11 = PP PPPPPPPPPPPP 44
NSt INTEITACEQUEIY.....ciiieeeeeeeeee 4]
1o RS o L = =TT U T ox o] (oo PP 53
(10 RS o1 L = g = (ot Y I =T 7= (o (o 1 PP PPPPPPPPPPP 60
(100 RS o1 gL =] g = (ot @ o a [T 1o 1R PP PPPPPPPPPPP 66

it.list.jft InterfaceMulticastCONNECHION...........coooii it bbb abeaneraneennrrnrees 72
I LIS INTEITACECONIEXL.....eieeiieeeeeeeeeee ettt 7/
LISt INTEITACEIFT ... ——— 8
TEJISEJTE INTEITACEIMASK. ... uvvviiiiiiiiiieee ettt e e e e e e e e ee et et e e e ee e e e e e e e e e e e e e e e e e e et e e e e eaeeaaaeaaeeaaaaaaeaaaeaaas 9«
NSt INterfaCeParanL... ... e ——————————————————- 97

it list.jft INterfaCeCONNECHONPAIAIML.vviiiiiiieeeieeeeeee e 99

it.list.jft InterfaceEntityClasSQUEINYPAIAM...........uuuuieeiiieieiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeereerereeeeeeaeeareeaeeees 121
I NSt Tt INTEIfACEFIEIPAIAM........eveiiieiieeeeeee et 122

it.list.jft InterfaceMulticastConnNeCtioNParam..............ooooiii i 125

& LisT

Table of Contents
JFT/Api Details

it liSt.jft INterfaCeQUEIYPAIANML..........coi oo ab b aa e rrne 127
it.list.jft INterfaceSuUbSCIIPLONPAram.........cooi it 129
it list.jft INterfaCeTranSACHIONPAIAM...........uuiiiiiiiiiiiiieeeee ettt e et e aaaeaaaaaaas 140
I LISt Tt INTEI ACETIMESTAMP. ... uviiiiiiiiiiiei ettt e et et e et et e e e e e e e e e e e e e e e e e e et e e et e e et e e e e aaaeaaeaaeaaaaaaaaaaaaaaeas 147
itlist.jft INterfaceTranSaACHONID...........c.ivviiiiieceeece e 148
(108 RS oL L =] = (o] = o] =] C PSP TUPPPPPPPP 15!
Lo o] G T [B 1S 0 10 Y= o PSPPSR PPPPP 15:
Packaget. liSt.jft.eVENTDESCIIPLIONL.uuuiuiutiiitiieiiitiiat bbb ee s s sseesessssssssssssssssssesssssssssssessesssreseeeseees 153
Packaget.list.jft.eVeNtDAtaMOUEL.............uuuiiiiiiiii e e e ss s eessesssasssesaareeaeeaeeaareaareaaeeaaees 153
HierarchyFor Packagat. liSt.jfl.eVENT..........oovviiiiieeeeeee e 154
INEEITACEHIBIAICNY.... ..o 15
ISt L. EVENTINIEITACEEVENLeiiiiiiieeee et e aaa s 155
it.list.jft.eventInterfaCeCONNECHIONEVELL............uuiiiiiiiiiiiiiiiii e ee e e s eeeesseessessseseesesesseesseeeeseeeeees 157
it.list.jft.eventinterfaceConnectioNCIOSEEVENL...........cooo i 158
it.list.jft.eventinterfaceCoNNECIONLOSIEVENL...........uuiiiiiiiiiiiiiiiiiii it e e eeeeeeeaeereeeeeees 159
it.list.jft.eventinterfaceConnectioNOPENEVENL...........cooviiiiiiiiii 160
it.list.jft.eventinterfaceEntityClasSQUEINYEVENL...........uuuuuieeiiiiiiiiiiiiititiiereeerereeerrrserreeeesaresrree e 166
it list.jft.eventiNterfaCeFItEIEVENL. e e e e e e s e eeeeeeseeeeeeeaeeaaeeeeeees 168
it.list.jft.eventinterfaCeFilterCrEatEEVENL............uuiiiiiiiiiiiiiiiiit e e e e s esseesssessseseeesseesaeeseeeeeeeeeees 169
it.list.jft.eventinterfaCeFilterDESIIOYEVENL...... ... ee s sessesssssesessseeseeeseees 171
it.list.jft.eventinterfaCeFiterSEtEVENL........coovvviiiiiieeeee 172
it.list.jft.eventinterfaceMulticastConnNectioNEVENL............coooiviiiiiiii 174
it.list.jft.eventiNterfaCEQUEIYEVENL.uuiiiiiiieeieeeeeee ettt ettt e et e e et e e e e et e e e e e et e e e e e e e e eeeeaaeeaaaaaaaaaaaaaas 175
it.list.jft.eventinterfaceQuUeryCreateEVeNL..........cooo i 176
it.list.jft.eventinterfaceQuUErYDESIIOYEVENL..........uuuuiiiiiiiiieiiieiieeieeeeeeeeeesaeeeseeeeeeeeeeeeeeeeesereeeeeaeeeereeraereaeeeeees 179
it.list.jft.eventinterfaceQueryNOtIfyEVENL ... 180
it.list.jft.eventIinterfaCeQUEINYROWSEVENL..........uuuuiiuiiitiiiiiitiiiiteiereeeee s eassesesssssssesssessseseesssesseeeseeeeeeeeeees 183
it.list.jft.eventinterfaceSUbSCIIPLONEVENL...........oooi i 184
it.list.jft.eventinterfaceSubscriptionldIEEVENt............oooviiiiiii 185
it.list.jft.eventinterfaceSubscriptionNOtifyEVeNt ..., 186
it.list.jft.eventinterfaceSubscriptionStartEVEDNL.............ooooi i 191
it.list.jft.eventinterfaceSubscriptioNStOPEVENL...........oooi i 192
it.list.jft.eventInterfaCeTranSACONEVENL............uuiiiiiieiiieiiuiiei e e s essesessssssssssseseesssessseeseeseereeeees 193
it.list.jft.eventinterfaceTransactioNnQUEINYEVENL............uuuiiiiiiiiiiiiiiiiiiiii i eaeesrseseseeseseseeseeeeeeeeeees 196
it.list.jft.eventinterfaceTransactioNnSENAEVENL.............ooooviiiiiiiiii e, 197
ISt Tt eVeNtINtErfAaCELISIENELceieeee e 198
it.list.jft.eventinterfaCeC ONNECIONLISIENELuuuiiiiiiiitiieiiieeieeieeee e eeee e eee e e e eeeeeseeeeeeeaeeeererreeeeeeeeeees 198
it.list.jft.eventinterfaceEntityClasSQUEIYLISIENEN........uuuuueiriiiriiiiiriirreieeireeeeeereesseeeeeesseeeseseeerraeerereareeaeereees 200
1o R A VE=T L G r= (ot 1 (=T] (=T 1= PP PPPPPPPP 201
it.list.jft.eventinterfaceMulticastConnNeCtioNLISIENEL..........ccoooiiiii i 203
it.list.jft.eventinterfaCeQUEIYLISIENE.........covviiieeeieeeeeee e 203
it.list.jft.eventinterfaceSubSCriPlONLISIENET..........coviiiiii e, 206
it.list.jft.eventinterfaCceT ranSaACIONLISIENE.........uuuiiiiiiiiiiiiiieeiieeieeeeeeereeeeeee e eeeeeeeeeeeeeeeaeeeeeesereereereeereeeeeees 208
| N oI o] o] [Tot= a0 g I o= a] o] [PP PPPPPPPPPI 21:
=T]][SR U P U PP PURPPPR 2:
=]][RP P U PR PURPPPRR 2:
=] 0] [PP PR RPSPUUPPPR 2.

Table of Contents

10 T 0 7= T3 1 £ ‘

& LisT

JFT/ApI

This manual describes JFT/API, the Java Application Program Interface developed by LIST within FastTrack to
access electronic markets and other services handled by FastTrack.

See:
Description
Packages
it.list.jft Provides interfaces for dealing with different FastTrack objects.
it.list.jft.event Provides interfaces for dealing with different types of events and listeners.

This manual describes JFT/API, the Java Application Program Interface developed by LIST within FastTrack to
access electronic markets and other services handled by FastTrack.

To start use this library read the JFT/Api Introduction or watch the data models (Package it.list.jft Data Model and
Package it.list.jft.event Data Model) or jump to JFT or just watch a few Java example programs.

ListGroup & FastTrack Contacts

Requests for clarifications, comments and suggestions to improve the quality of the product are welcome.
Please contact us:

LIST SpA
Via Pietrasantina, 123
56122 PISA ITALY

Or contact us by email:

Marketing: infodesk@list—group.com
General Support: helpdesk@list—-group.com
JFT/API Programming Support:ftapi@list—group.com

Or visit us at www.list.it

Related Documentation

FTAPI.pdf - FT/API Programmer's Guide -V 3.2.11
The traditional C interface to FastTrack.
FastTrade White Paper
Introduction to FastTrade technology.

See Also:
JFT/Api Introduction, JFT, JFT Application Examples,
JFT Exceptions, JFT Implementation Threads, JFT Synchronization

JFT/Api 1

mailto:infodesk@list-group.com
mailto:helpdesk@list-group.com
mailto:ftapi@list-group.com
http://www.list.it

\g I.l ST JFT/Api

Submit a bug or feature to FT\API Programming Support

2 JFET/Api

mailto:ftapi@list-group.com

JFT/Api Introduction

This manual describes version 3.0.0 of JFT/API, the Java Application Program Interface developed by LIST within
FastTrack to access electronic markets and other services handled by FastTrack.

Data structure and functions of JFT/API interface are described, along with the main concepts regarding access to 1
FastTrack server: connections, data subscriptions, transactions, queries, etc...

The first chapter FastTrack Overview introduces the main basic concepts of FastTrack with a short overview of
system architecture.

The second chapter Data Distribution explains how data are distributed, searched and retrieved inside FastTrack.

Chapter three JFT/Api Details describes the main peculiarities of the Java Access Point to FastTrack: lifecycle,
communication model, exception handling, threads synchronization, etc...

Following chapters contain the effective and detailed descriptions of the Api subdivided in two different packages:
it.list.jft and it.list.jft.event,

Finally, after all details on specific JFT/Api functions, a few examples of Java application are given in order to explo

almost all major capabilities offered by JFT/Api and to be possibly fruitfully studied and used as starting point for
effectives Java programs that links to a true FastTrack server.

JFT/Api Introduction 3

JFT/Api Introduction

JFT/Api Introduction

FastTrack Overview

This chapter explains the basic concepts of FastTrack that are fundamental in developing Java applications that ac
FastTrack services using this JFT/Api.

System Architecture Overview
FastTrack's architecture is modular and distributed.

There are three different architectural levels for the various components, depending on the service they implement:

* Core
* Basic
» Enterprise

The core level is the heart of the system, the foundation of FastTrack's modular architecture.

The set of FastTrack modules managing communication with the external world makes up the basic level. These ar
organized into two categories: Adapters, through which FastTrack can access other systems or electronic markets,
and Access points, which give access to FastTrack from the outside. Finally, the enterprise level hosts the function:
applications in FastTrack (Engine level).

: Auditing
,_.,,,., oy H- Trading rocom

% # . :'—7'7.“ - »
oy T ' g
(Remate apolications FT- C(‘(l"a‘\lo‘ User Applications

Access Level
Internet 9 ey c—" a— S— — —

Message PP CCREA FT/A i
O e TCR/IP 'C;T-/ T/AR L FEX

SV)
n

neco 'J 9 ne Level

— RlSk Smart
Market O.rles 'tcnn—ment. Crdes

Engre
. Meta

MTA Furex Adapter Level smpars Burorext
A S
10eM QEWn

FastTrack's components interact both in a synchronous and asynchronous way - the latter uses a publish—subscrik
paradigm.

FastTrack is a distributed system. The computing process is subdivided into several steps. It is not performed by or
individual component, but by a series of elements (Application Servers or Services) each designed to carry out its
particular part of the process.

Access points

The Access Point Level is the only interface FastTrack offers to use its services from the outside.

FastTrack Overview 5

& I.I ST JFT/Api Access Point

Queries made to the FastTrack platform and answers to these queries both go through the Access Point Level.

The Access Point Level:

* provides access to external applications which use communication protocols which are very different from
one another, thus guaranteeing their complete access to FastTrack's functionalities;

e manages connections coming from external applications;

* manages in a centralized way the sessions that have been opened on FastTrack, by users connected via
proprietary applications, or the FastTrack Console, or a Web browser, independently of the communication
protocol;

« provides all functionalities needed by the external application to utilize the services offered by internal
engines, hence:

¢ transactions to send requests;
¢ real-time data distribution mechanisms (for example push on HTML);
¢ mechanisms to perform point to point requests (e.g. Query).

JFT/Api Access Point

This JFT/Api library is just a FastTrack Access Point that offers a Java interface to be used in order to connect
FastTrack servers via TCP/IP connections.

Using this library it is possibile to construct Java applications and/or applets that may communicate with one or mor
FastTrack servers and/or services.

Obviously the effective access to these services is managed/controlled/verified in relation to various credentials (us
names, passwords, authorization keys, etc...) that an external application must presents in order to be properly
authorized to enter in the system.

6 JFT/Api Access Point

Data Distribution

Data are distributed through a publish/subscribe protocol, in which producers and consumers exchange messages
access the data. There are many data structure exchanged within FastTrack. Each data structure is called EntityCl:
and it is structured in many fields of many different types (numbers, strings, etc...). Each set of values that correspo
to these fields is an instance of the EntityClass. This instance id called Entity. Applications may modify or access ar
entire Entity (all the fields of an instance of an EntityClass) or a subset of these fields defined using a mask.

From now on we call;

« client any Java application that use JFT/Api,
« server any FastTrack service that is connected to the client.

As we will see below, normally a client is a subscriber, and the server is a producer, of a set of data which are
exchanged between them.

Publish

The producer (tipically a fastTrack service) naotifies the availability of new data with a publish message. These
messages are sent to all connected components (other Faststrack services and/or JFT applications) that expressec
interest on these type of data.

Example:
a FastTrack order-manager publishes all records that describes new received or changed orders.

Only certain EntityClasses of a FastTrack server may be published and then subscribed. The documentation of eac
FastTrack server clearly says which EntityClasses can be published/subscribed.

Subscribe

A request for data by consumers is done by a subscribe message. This message typically says in which EntityClas:
consumer is interested.

Example:
a customer subscribes to the orders handled by FastTrack.

Subscriptions in JFT/Api are modelled by Subscription. Among other things within subscriptions it's possible to have
 Incremental Subscriptions, in which the server is only required to send updated contents of an EntityClass,
rather than sending all its records;
« Partial Subscriptions, in which the server is requested to send only those entities in a EntityClass that satisf
certain constraints;
 an optional Filter to restrict (at the server level) the set of entities that will be notified;
« an optional Mask to restrict (at the server level) the set of fields of entities that will be notified.

See Subscription Usage to see all specific subscription—related modalities.

Queries

In addition to the publish/subscribe mechanism a client has the possibility to obtain from the server a specific set of

Data Distribution 7

@ I.I ST Transactions

entities. This is done with the Query metaphor that mimics the homonymous facility of DBMS. Normally each type ©
guery (identified by a specific number) has an argument that specify the particular request.

Example:
A client queries for all orders sent by a specific operator.

Only certain queries (each identified by a unique number) are permitted with a FastTrack server. The documentatio
of each FastTrack server clearly lists which queries (i.e. numbers) are permitted and with which arguments.

Transactions

The client may request a server to make some actions that may result in the update of one or more entities. The se
evaluates the request and accepts or refuses it. Accepting the modification often implies application specific check
actions by the server with the aim of controlling the access rights and action consistency while interpreting the
semantics of the request arrived from the client. This is modeled in JFT/Api with the Transaction metaphor.

Example:
the client asks the server to issue an order on a specific product.

This operation may take a long period to be completed by the server and so the client have to monitor it until a goo
or bad (commited vs aborted) final result. This monitoring must be always done by the client, even after a
client-restart on previous initiated (past) transactions. Only when the client see the final commited result it may
assume that the transaction was succesfully.

See Transaction Usage to see all specific attributes of a transaction and how to monitor past transactions.

Connections and Contexts
All the above described capabilities are communicated between the client Java application (that use these JFT/Api)
and the FastTrack server (a specific service of a FastTrack server) using a TCP/IP channel modelled with a
Connection. The main attributes of such Connections are the TCP/IP host and port on which a named service resid
Example:
an order—-manager service may reside on port 1234 of host myFTserver.myDomain.com (or
something like 194.91.195.33) and beeing named OrderManager

See Connection Usage to see all specific attributes that define a connection.

In addition the Context. metaphor has been introduced in order to group together connections (and corresponding
subscriptions, transactions, queries, etc..) that refer to the same set of related FastTrack services.

8 Transactions

JFT/Api Details

The JFT/Api library may be used starting with Sun JDK 1.1.8.

Asynchronous Communication Model

The implementation of JFT/API functionalities is based on an asynchronous communication model. A functionality
(such as connection opening or a subscription for a set of data) is requested to the library via a method invocation.
This request specifies (among other parameters) some notification methods, defined by the user in some Listener,
which will be called by the library when data arrive or when other events occur.

See Listener interface for specific details.

LifeCycle

Many objects exposed by the JFT/Api library share the life cycle metaphor: once they are created, their life goes
through well defined steps depending on their internal status.

See the LifeCycle interface and its related sub—interfaces to understand how this behaviour is controlled and
regulated.

Data Model

The UML data models of the two packages of this JFT/Api library are available.

See it.list.jft Data Model and it.list.jft.event Data Model to familiarize with the hierarchy and
relationship of the various interfaces.

Other Peculiarities

Some other details of the JFT/Api implementation are referenced here in order to use at the best the library:
« JFT Exceptions describes when and how the library throw exceptions,
« JFT Implementation Threads describes how the library use its own threads and how to successfully exit fron
a Java client,

« JFT Synchronization describes the synchronization needs and requirements that must be obeyed in the
execution of some specific Listener methods.

JFT/Api Entry Point

Last but not least:
Where is the first initial entry point to use this library?

It's available in the singleton that implements the JFT interface. Using that singleton, referenced by the THIS conste
every programmer may starts to use the library accessing all its functionalities.

JFT/Api Details 9

http://www.omg.org/gettingstarted/what_is_uml.htm

@ I_I ST Package it.list.jft

Package it.list.jft
Provides interfaces for dealing with different FastTrack objects.

See:
Description

Interface Summary

ActivityLifeCycle Super—-interface common to all lifecycles objects of a given Connection.

CommunicationLifeCycle |Super-interface common to all lifecycles objects of a given Context.

Connection Logical bidirectional channel with a server.

ConnectionParam Connection parameter container.

Context Container and factory of inter-related communication objects.

Entity Interface that describes a specific instance of a EntityClass.

EntityClass Interface that describes a specific market/service class.

EntityClassQuery

EntityClassQueryParam

EntityField

EntityFilter Usgglly, fasttrack sgrvgrices implements a defa_lult filter to restrict the set of valyes
notified by a Subscription, based on full or partial key values.

EntityKey An actual (partial or full) key value of a key of an EntityClass.

Filter A manner to restrict the set of values notified by a Subscription.

FilterParam Filter parameter container.

JFT Main basic library interface to use within JFT/API.

LifeCycle Super-interface common to all lifecycles.

Mask A set of fields of a EntityClass.

MulticastConnection

MulticastConnectionParam

Super-interface common to all parameter container of

Param CommunicationLifeCycle objects.

Quer A client's request to a server to obtain a set of entities (or rows) from its own Data
y Base.

QueryParam Query parameter container.

An arrangement with the server for receiving a continuing set of interesting entities of

Subscription the same EntityClass.

SubscriptionParam Subscription parameter container.
TimeStamp Interface that allows to represent a temporal indicator.
Tracer Interface to be implemented in order to handle the library trace.

10 Package it.list.jft

Package it.list.jft Description @ I.I ST

. A client's request to the server to add, remove or modify an entity in its own Data
Transaction
Base.
TransactionlD Interface that allows to identify a Transaction.
TransactionParam Transaction parameter container.

Package it.list.jft Description
Provides interfaces for dealing with different FastTrack objects.

Implementation of Tracer must be provided by the JFT application.
Implementation for all other interfaces is already provided by the JFT library.

See the hierarchy of this it.list.jft package and the JFT documentation for details.

Package it.list.jft Data Model

Package it.list.jft Description 11

LIS

T

Hierarchy For Package it.list.jft

T T

LifeCycle
| THIS : JFT | status
release()
l l Param
| JFT Context
: : I ‘ isBound()
|bitr8ry\/er8|on = o0 CommunicationLifeCyc
ni makeConnection
start() —®nakeFiter() —* :
ImakeContext() ImakeQuery() Listener
makeEmptyMask() makeSubscription()
setTrace*() makeTransaction() ﬁk
Connection
host, port
atternative host, port
EntityClass — proxy host, port
. ity ActivityLifeCyclp [orioo o
entityClassiD | application revision, signature
ertityClassName ——® _ charset
__[isKevD et ullEntityKey() client!D
gethNumSegments() petPartialEntitykey() Compression
Py onnection type
Lser type, name, password
npen()
close()
[I [
Query Transaction Subscription -
. queryID action entityClassTimeStamp Filter
at keylD entityClassVersion type
Mask L?eryeR%ws() bendingTransactionlD entityiey definition
estroy() resEntityRequired low value
reset() end() HueryType create()
addFieldByName() uery() start() set()
isBound() etTransactionlD() refreshEntity() destroy()
stop()

The above figure is the UML representation of it.list.jft data model.
In blue all interfaces that implement LifeCycle objects.

Submit a bug or feature to FT\API Programming Support

Hierarchy For Package it.list.jft

Package Hierarchies:
All Packages

12

Hierarchy For Package it.list.jft

mailto:ftapi@list-group.com

Interface Hierarchy @ I_I ST

Interface Hierarchy

 Cloneable
¢ Entity (also extends EntityClass, Serializable)
« EntityClass
¢ Entity (also extends Cloneable, Serializable)
* EntityField
 EntityKey
« LifeCycle
¢ CommunicationLifeCycle
O ActivityLifeCycle
[EntityClassQuery
(Filter
* EntityFilter
[(Ruery
[(Bubscription
(Transaction
¢ Connection
¢ MulticastConnection
+ Context
¢ JFT
» Mask
* Param
ConnectionParam
EntityClassQueryParam
FilterParam
MulticastConnectionParam
QueryParam
SubscriptionParam
¢ TransactionParam
* Serializable
¢ Entity (also extends Cloneable, EntityClass)
¢ TimeStamp
¢ TransactionID
* Tracer

> & & o o

<

Submit a bug or feature to FT\API Programming Support

it.list.jft
Interface EntityClass

All Known Subinterfaces:
Entity

public interface EntityClass
Interface that describes a specific market/service class.

All market/service EntityClasses share a set of common methods to:

Interface Hierarchy 13

mailto:ftapi@list-group.com

@ LI ST Interface Hierarchy

* retrieve the class name,

* retrieve the class ID,

* check if if a given KeyID is a valid key index,

* retrieve the number of segments of a given KeyID.

In addition all market/service objects, that implement the Entity sub-interface, share, as well, these methods.

If necessary explicitly objects that implement this interface are created and returned by the
JFT.getEntityClass() method.

Field Summary

static int TYPE_ENTITY

static int TYPE_ENUM

Method Summary

int [getEntityClassID()
Returns the ID that identifies the EntityClass.

String | getEntityClassName()
Returns the name that identifies the EntityClass.

EntityField[] getEntityFields()

int |getNumSegments(int keyID)
Returns the number of segments of the given KeyID of this EntityClass.

int 1 getType()

boolean |isKey(int keyID)
Check if a given keyID is an index of a key for this EntityClass.

boolean |isKey(int keylD, boolean checkPrimary)
Check if a given keyID is an index of a primary or duplicate key for this EntityClass|.

Entity | makeEntity()

Field Detall

14 Interface Hierarchy

it.list.jftinterface EntityClass

TYPE_ENTITY
static final int TYPE_ENTITY

See Also:
Constant Field Values

& LisT

TYPE_ENUM
static final int TYPE_ENUM

See Also:
Constant Field Values

Method Detail

getEntityClassName
String getEntityClassName()
Returns the name that identifies the EntityClass.

Returns:
the name that identifies the EntityClass.

null and empty strings are never returned.

getEntityClassID
int getEntityClassID()
Returns the ID that identifies the EntityClass.

Returns:
the ID that identifies the EntityClass.

zero or negative values are never returned.

isKey

boolean isKey(int keyID)

Check if a given keyID is an index of a key for this EntityClass.

Parameters:
keyID - index to be checked
Returns:

true if keylD is an index of a key for this EntityClass,

falseotherwise.

it.list.jftinterface EntityClass

15

& LI ST it.list.jftinterface EntityClass

isKey

boolean isKey(int keyID,
boolean checkPrimary)

Check if a given keylID is an index of a primary or duplicate key for this EntityClass.
Parameters:
keylID — index to be checked
checkPrimary — check for primary or duplicate key index
Returns:
true if keylD is an index of a key for this EntityClass and it refers a primary or duplicate key as
specified by checkPrimary parameter,
falseotherwise.

getNumSegments

int getNumSegments(int keylD)

Returns the number of segments of the given KeyID of this EntityClass.
Parameters:

keylID - the index of a key of this class.
Returns:

the number of segments of the given KeyID of this EntityClass.

0 is returned if the KeylD parameter is not a valid index of a key of this class.

getType

int getType()

getEntityFields

EntityField[] getEntityFields()

makeEntity

Entity makeEntity()

Submit a bug or feature to FT\API Programming Support

it.list.jft
Interface Entity

All Superinterfaces:
Cloneable, EntityClass, Serializable

16 it.list.jftinterface EntityClass

mailto:ftapi@list-group.com

it.list.jftinterface Entity ‘\-\ I.I ST
public interface Entity

extends EntityClass, Cloneable, Serializable
Interface that describes a specific instance of a EntityClass.

All entities objects share two common methods to retrieve full and partial EntityKeys, in additions to inherithed
methods from EntityClass.

All other specific fields of each entity are available as specific fields of the correspinding Java object that implement
this interface.

Field Summary

Fields inherited from interface EntityClass
TYPE_ENTITY, TYPE_ENUM

Method Summary

Object | clone()
Implement Cloneable interface.

Object | getField(String fieldName)
Returns a field value of this Entity.

EntityKey | getFullEntityKey(int keyID)
Returns a given full EntityKey of this Entity.

EntityKey | getPartialEntityKey(int keyID, int numSegments)
Returns a given partial EntityKey of this Entity.

void |setField(String fieldName, Object value)
Set a field value of this Entity.

Methods inherited from interface EntityClass

getEntityClassID, getEntityClassName, getEntityFields, getNumSegments,
getType, isKey, isKey, makeEntity

Method Detail

getFullEntityKey
EntityKey getFullEntityKey(int keyID)

Returns a given full EntityKey of this Entity.

it.list.jftinterface Entity 17

& LI ST it.list.jftinterface Entity

Please note:
getFullEntityKey(keyID) == getPartialEntityKey(keyID,

getNumSegments(keyID))

Parameters:
keyID - the index of a key of this class.

Returns:
a given full EntityKey of this Entity.
null is returned when the given keyID does not refer to a valid key for the EntityClass of this
Entity.

getPartialEntityKey

EntityKey getPartialEntityKey(int keyID,
int numSegments)

Returns a given partial EntityKey of this Entity.
Parameters:
keyID - the index of a key of this class.
numSegments — number of initial segments that must be present in the partial key.
Returns:
a given partial EntityKey of this Entity.
null is returned when the given keyID does not refer to a valid key for the EntityClass of this
Entity,
or when the given numSegments parameter is <=0 or > getNumSegments(keyID).

getField

Object getField(String fieldName)
throws NullPointerException,
lllegalArgumentException

Returns a field value of this Entity.

Please note:
- to get array value at index i use "fieldnamel[i]"
— for nested entity field use "." as separator
For primitive value, it returns the Object corresponding to it (e.g. int as returned as Integer).
Parameters:
fieldName — the name of the field.
Returns:
the Object value of the field.
null is returned when the given fieldName does not refer to a valid field for the EntityClass
of this Entity.
Throws:
lllegalArgumentException — if the field name is not valid.
NullPointerException

18 it.list.jftinterface Entity

it.list.jftinterface Entity & I_I ST

setField

void setField(String fieldName,
Object value)
throws NullPointerException,
lllegalArgumentException,
ClassCastException

Set a field value of this Entity.

Parameters:
fieldName — the name of the field.
value - the Object value of the field.

Throws:
lllegalArgumentException - if the field name is not valid.
ClassCastException — if the Object value type is not valid.
NullPointerException

See Also:
getField(java.lang.String)

clone

Object clone()
throws CloneNotSupportedException

Implement Cloneable interface.
Throws:
CloneNotSupportedException

Submit a bug or feature to FT\API Programming Support

it.list.jft
Interface EntityField

public interface EntityField

Field Summary

static int TYPE_BOOLEAN

static int TYPE_BYTE

static int TYPE_CHAR

static int TYPE_DATE

it.list.jftinterface Entity 19

mailto:ftapi@list-group.com

S LIST

it.list.jftinterface Entity

static int TYPE_DOUBLE
static int TYPE_DTIME
static int TYPE_ENTITY_CLASS
static int TYPE_FLOAT
static int TYPE_INT
static int TYPE_LDATE
static int TYPE_LONG
static int TYPE_LTIME
static int TYPE_MTIME
static int TYPE_SHORT
static int TYPE_STRING
static int TYPE_TDATE
static int TYPE_TIME
static int TYPE_UCHAR
static int TYPE_UINT
static int TYPE_ULONG
static int TYPE_USHORT
Method Summary
EntityClass getEntityClass()
String | getName()

20

it.list.jftinterface Entity

it.list.jftinterface EntityField

& LisT

int |getNumElements|()

int | getType()

Field Detall

TYPE_ENTITY_CLASS
static final int TYPE_ENTITY_CLASS

See Also:
Constant Field Values

TYPE_INT
static final int TYPE_INT

See Also:
Constant Field Values

TYPE_UINT
static final int TYPE_UINT

See Also:
Constant Field Values

TYPE_SHORT
static final int TYPE_SHORT

See Also:
Constant Field Values

TYPE _USHORT
static final int TYPE_USHORT

See Also:
Constant Field Values

it.list.jftinterface EntityField

21

S LIST
TYPE_LONG

static final int TYPE_LONG

See Also:
Constant Field Values

it.list.jftinterface EntityField

TYPE_ULONG
static final int TYPE_ULONG

See Also:
Constant Field Values

TYPE_FLOAT
static final int TYPE_FLOAT

See Also:
Constant Field Values

TYPE_DOUBLE
static final int TYPE_DOUBLE

See Also:
Constant Field Values

TYPE _BYTE
static final int TYPE_BYTE

See Also:
Constant Field Values

TYPE_CHAR
static final int TYPE_CHAR

See Also:
Constant Field Values

22

it.list.jftinterface EntityField

TYPE_UCHAR
static final int TYPE_UCHAR

See Also:
Constant Field Values

it.list.jftinterface EntityField

& LisT

TYPE_STRING
static final int TYPE_STRING

See Also:
Constant Field Values

TYPE_DATE
static final int TYPE_DATE

See Also:
Constant Field Values

TYPE_TIME
static final int TYPE_TIME

See Also:
Constant Field Values

TYPE_TDATE
static final int TYPE_TDATE

See Also:
Constant Field Values

TYPE_LTIME
static final int TYPE_LTIME

See Also:
Constant Field Values

it.list.jftinterface EntityField

23

& LisT
TYPE_LDATE

static final int TYPE_LDATE

See Also:
Constant Field Values

it.list.jftinterface EntityField

TYPE_BOOLEAN
static final int TYPE_BOOLEAN

See Also:
Constant Field Values

TYPE_MTIME
static final int TYPE_MTIME

See Also:
Constant Field Values

TYPE_DTIME
static final int TYPE_DTIME

See Also:
Constant Field Values

Method Detail

getType

int getType()

getEntityClass

EntityClass getEntityClass()

getName

String getName()

24

it.list.jftinterface EntityField

it.list.jftinterface EntityField & I_I ST

getNumElements

int getNumElements()

Submit a bug or feature to FT\API Programming Support

it.list.jft
Interface EntityKey

public interface EntityKey
An actual (partial or full) key value of a key of an EntityClass.

An EntityKey is an ordered set of N values corresponding to the ordered set of K (K >= N) segments that describe ¢
key of an EntityClass.

If N == K then the EntityKey is full, otherwise (0 < N < K) it's partial.

The type of each segment is a Java primitive type (boolean, byte, char, short, int, long, float,
double) or it is a String.

An Entity Key may be used in subscriptions (SubscriptionParam.setEntityKey() and
Subscription.refreshEntity()) or it may be retrieved from entities (Entity.getFullEntityKey/()
and Entity.getPartialEntityKey()) and then re—used.

Method Summary

int | getEntityClassID()
Returns the ID of the EntityClass related to this EntityKey.

int | getKeylID()
Returns the key ID of this key.

int |getNumSegments()
Returns N (N>0), the numbers of set segments of this EntityKey.

Method Detail

getKeylID
int getKeylID()

Returns the key ID of this key.

it.list.jftinterface EntityField 25

mailto:ftapi@list-group.com

& LI ST it.list.jftinterface EntityKey

The returned value is the same keyID used as parameter of Entity.getFullEntityKey() or
Entity.getPartialEntityKey() invocations that created this EntityKey.
Returns:

the key ID of this key.

getEntityClassID

int getEntityClassID()
Returns the ID of the EntityClass related to this EntityKey.
The returned value is the EntityClassID of the Entity that created (via Entity.getFullEntityKey() or
Entity.getPartialEntityKey() this EntityKey.

Returns:
the ID of the EntityClass related to this EntityKey.

getNumSegments
int getNumSegments()
Returns N (N>0), the numbers of set segments of this EntityKey.

The returned value is the number of segments of the EntityClass for a full EntityKey, or it is the same
numSegments used as parameter of Entity.getPartialEntityKey() for a partial EntityKey.
Returns:

N (N>0), the numbers of set segments of this EntityKey.

Submit a bug or feature to FT\API Programming Support

it.list.jft
Interface LifeCycle
All Known Subinterfaces:

ActivityLifeCycle, CommunicationLifeCycle, Connection, Context, EntityClassQuery, EntityFilter, Filter,
JFT, MulticastConnection, Query, Subscription, Transaction

public interface LifeCycle
Super—-interface common to all lifecycles.
LifeCycle Usage
All JFT LifeCycle objects share:
« an initial STATUS_INIT status where every object goes immediately after its creation,

» afinal STATUS_RELEASED status where every object goes when the release() method is explicitly
invoked,;

26 it.list.jftinterface EntityKey

mailto:ftapi@list-group.com

it.list.jftinterface LifeCycle @ I_I ST

« a getStatus() method to retrieve the current object status;

« arelease() method to abruptly and recursively move an object in the final STATUS RELEASED status.

« three result-codes (RESULT_OK, RESULT_INVALID_STATUS and RESULT_GENERIC_ERROR) that
may returned by many JFT methods.

The three directs sub-interfaces of LifeCycle (JFT, Context and CommunicationLifeCycle) add many other
capabilities to this interface.

Lifecycle
Igarbage collected
I LifeCycle object created KCSTATUS_RELEASED j
! rvlw-xeg/ "'T\
frelease()
o ™
| STATUS_INIT l
Here there is the specific lifecy
for the specific LifeCycle object.
A -
See Also:

JFT LifeCycle, Context LifeCycle, Connection LifeCycle, Filter LifeCycle, Query LifeCycle, Subscription
LifeCycle, Transaction LifeCycle

Field Summary

static int RESULT_GENERIC_ERROR
Generic failure—code returned when a more specific error is not available.

static int RESULT_INVALID_STATUS
Failure—code returned when an operation is requested whitin a not correct status.

static int RESULT_OK
Positive answer returned when the operation completed successfully.

static int STATUS_INIT
Lifecycle status: initial status for every object that implements the LifeCycle interface.

static int

it.list.jftinterface LifeCycle 27

& LisT

it.list.jftinterface LifeCycle

STATUS_RELEASED

Lifecycle status: final status for every object that implements the LifeCycle interface.

Method Summary
Enumeration enumcChilds()
Returns an enumeration of all non—-STATUS_RELEASED childs of this LifeCycle.
int | getStatus()
Returns the current lifecycle status of this object.
void |release()

Abruptly and recursively move an object in the final STATUS_RELEASED status.
Field Detalil
RESULT_OK

static final int RESULT_OK

Positive answer returned when the operation completed successfully.

See Also:

Constant Field Values

RESULT_GENERIC_ERROR

static final int RESULT_GENERIC_ERROR

Generic failure—code returned when a more specific error is not available.

See Also:

Constant Field Values

RESULT_INVALID_STATUS

static final int RESULT_INVALID_STATUS

Failure—code returned when an operation is requested whitin a not correct status.

See Also:

Constant Field Values

28

it.list.jftinterface LifeCycle

it.list.jftinterface LifeCycle Q I_I ST

STATUS_INIT
static final int STATUS_INIT

Lifecycle status: initial status for every object that implements the LifeCycle interface.
This value may be returned by getStatus().

Status Entry:
object creation STATUS_INIT.
Status Activities:
getStatus() and other specific activities allowed in this status for the specific subinterfaces of
LifeCycle.
Status Exit:
any status release() STATUS_RELEASED.

See Also:
Constant Field Values

STATUS_RELEASED
static final int STATUS_RELEASED

Lifecycle status: final status for every object that implements the LifeCycle interface.
This value may be returned by getStatus().

Status Entry:
any status release() STATUS_ RELEASED.

Status Activities:
getStatus() or other activities that does not depend from the status of the object (e.g.
JFT.getLibraryVersion() in JFT, CommunicationLifeCycle.getContext() in
CommunicationLifeCycle, etc...).

Status Exit:
none: an object in this status will never change status.

See Also:
Constant Field Values

Method Detail

release
void release()
Abruptly and recursively move an object in the final STATUS_RELEASED status.

This object, and all others objects that depends from this object (see later), are abruptly moved on the final
STATUS_RELEASED status. For the objects in this final status:

¢ very few activities are availables (see STATUS_RELEASED description),

it.list.jftinterface LifeCycle 29

& LI ST it.list.jftInterface LifeCycle

¢ any automatic Listener method invocation is never made.
The recursive moving of an object in the final status obeys to the following tree structure:

OJFT
[(Context
» Connection
+ Filter
¢ Subscription
¢ Query

¢ Transaction
E.g. if this method is called on a connection then this connection and all its childs (filters, subscriptions,
gueries and transactions) are moved on the final STATUS_RELEASED status. Please note: JFT, all context
all other connections and all other childs of others connections are unaffected by this operation in this

example.

This method may be invoked at any time, even if this object is already in the final STATUS RELEASED
status.

getStatus
int getStatus()
Returns the current lifecycle status of this object.

Each object has a status that may be one of the two commons LifeCycle status (STATUS_INIT or
STATUS_RELEASED) or a specific status that is described by a constant STATUS _ described in one of the
subinterface of LifeCycle.
Returns:

the current lifecycle status of this object.

enumcChilds
Enumeration enumChilds()

Returns an enumeration of all non—-STATUS_ RELEASED childs of this LifeCycle.

The hierarchy is depicted in the release() description.

This method returns only the first level childs of a given LifeCycle: e.g. for a Context it returns only the
Connections of this Context and not their ActivityLifeCycle childs.

This method may be invoked at any time, even if this object is in the final STATUS_RELEASED status.

Returns:
an enumeration of all non—-STATUS_RELEASED childs of this LifeCycle.

null is never returned.

Submit a bug or feature to FT\API Programming Support

30 it.list.jftinterface LifeCycle

mailto:ftapi@list-group.com

it.list.jft Interface CommunicationLifeCycle @ I.I ST

it.list.jft
Interface CommunicationLifeCycle

All Superinterfaces:
LifeCycle

All Known Subinterfaces:
ActivityLifeCycle, Connection, EntityClassQuery, EntityFilter, Filter, MulticastConnection, Query,
Subscription, Transaction

public interface CommunicationLifeCycle
extends LifeCycle

Super-interface common to all lifecycles objects of a given Context.

The 5 kind of objects (Connection, Filter, Query, Subscription and Transaction) that implement this
interface:

« are created by makeSomething methods of their Context,
» shares 3 common methods to get their associated Context, Listener and parameter.

JFT Implementation Threads

The underlying implementation of JFT use some implementation threads to:

* read and write data from/to the server, and
« call the Listener methods in the Java application.

These JFT implementation threads are not daemons threads, so the main Java thread may safely terminate and th
application continue to run until there are some JFT implementation threads running (see the section 12.8 of the Ja
Language Specification).
There is at least one JFT implementation thread:
* when there are some Listener methods eligible to be called (e.g. a
Connection.STATUS _CONNECTING, or a Subscription.STATUS _STARTED, or a
Query.STATUS_DESTROYING, or ...) because there are some i/o data pending.

There are no JFT implementation threads when all CommunicationLifeCycle objects are
LifeCycle.STATUS_RELEASED so a sure manner to terminate a Java application that use JFT is:

JFT.THIS.release()
JFT Synchronization
The JFT library guarantees that any implementation thread never holds any monitor lock on any objects that

implements any JFT interfaces.
JFT library internally never synchronize on JFT, EntityClasses, Entities, Connections, Subscriptions, etc... objects.

it.list.jft Interface CommunicationLifeCycle 31

http://java.sun.com/docs/books/jls/second_edition/html/execution.doc.html#44857

& I.I ST it.list.jft Interface CommunicationLifeCycle

This is always guaranteed, even inside the Listener methods called inside the JFT implementation threads. So the
programmer that uses the JFT library is free to synchronize on these objects for his needs.

But Warning:

Each Listener method must execute its task within the shortest time possible.

Do not synchronize anything or make time—-intensive computation inside the Listener methods
because this may deadlock the JFT library.

If you have an impelling necessity to do so, you have to start another thread to accomplish your needs.
So, please, do not download a file from FTP and/or do not compute the first one million digits of Pl
inside a Listener method!

In addition there is no need to synchronize any activity between the programmer and the JFT library. All needed
synchronizations are made by JFT library on internal hidden objects, not accessible to the JFT programmer that us
this JFT APL.

E.g. for internal needs the JFT implementation may synchronize their implementation threads on the subscriptions «
on the connections: this is made synchronizing on the private hidden fields lockObject that are present in the JFT
implementation of Subscription and Connection.

The primitive data returned by the implementation to the JFT application (e.g. the status returned by
LifeCycle.getStatus() method) are internally implemented as primitive volatile data, so they are almost
always in synch between the implementation and the application.

So the JFT application does not need to protect itself with something like:

if (mySubscription.getStatus() == LyfeCycle.STATUS_INIT)
mySubscription.start();

because, even if the status returned in mySubscription.getStatus() is LyfeCycle.STATUS_INIT, when

the application invoke the mySubscription.start() method, the status may already be changed to
STATUS_RELEASED because another thread, in the meantime, has released the Connection associated to
mySubscription.

The JFT library implementation instead surely synchronize the access to the various objects and status with somett
like:

public int start() {
synchronized(lockObject) {
if (status == STATUS_INIT) {

status = STATUS_STARTING;

}
}
}

E.g. this prevents any status changes by others threads inside the start() code.

In brief:
¢ The JFT application does not care of JFT implementation threads.
¢ The JFT application does not need to synchronize with these JFT implementation threads.
O The JFT application is free to synchronize on any objects for its own needs.

32 it.list.jft Interface CommunicationLifeCycle

it.list.jftinterface CommunicationLifeCycle Q I.I ST

but

¢ WARNING: The JFT application must not synchronize inside a Listener method.

O WARNING: The JFT application must not made time—-intensive computation inside a Listener
method.

See Also:
LifeCycle

Field Summary

Fields inherited from interface LifeCycle

RESULT_GENERIC_ERROR, RESULT_INVALID_STATUS, RESULT_OK, STATUS_INIT,
STATUS_RELEASED

Method Summary

Context | getContext()
Returns the associated Context.

Listener | getListener()
Returns the associated Listener.

Param [getParam()
Returns the associated Param.

Methods inherited from interface LifeCycle

enumChilds, getStatus, release

Method Detail

getContext
Context getContext()
Returns the associated Context.

Each CommunicationLifeCycle object has a Context from which it was created (e.g. for a Subscription
the associated Context is the object on which the Context.makeSubscription() method was
invoked).
This method return this Context.
Returns:
the associated Context.
null is never returned.

it.list.jftinterface CommunicationLifeCycle 33

& I.I ST it.list.jftinterface CommunicationLifeCycle

getParam
Param getParam()
Returns the associated Param.

Each CommunicationLifeCycle object has a specialized sub-interface of Param that described the specific
creation parameter for that object (e.g. for a Subscription the associated Param is the second parameter
(SubscriptionParam) of Context.makeSubscription()).

This method return this parameter casted to the super—interface Param.

All parameters returned by this method are bound.
Returns:

the associated Param.

null is never returned.

getListener
Listener getListener()
Returns the associated Listener.

Each CommunicationLifeCycle object has a specialized sub-interface of Listener that described the specific
listener for that object (e.g. for a Subscription the associated Listener is the Third parameter
(SubscriptionListener) of Context.makeSubscription()).
This method return this parameter casted to the super—interface Listener.
Returns:

the associated Listener.

null is never returned.

Submit a bug or feature to FT\API Programming Support

it.list.jft
Interface ActivityLifeCycle

All Superinterfaces:
CommunicationLifeCycle, LifeCycle

All Known Subinterfaces:
EntityClassQuery, EntityFilter, Filter, Query, Subscription, Transaction

public interface ActivityLifeCycle
extends CommunicationLifeCycle

Super-interface common to all lifecycles objects of a given Connection.

34 it.list.jftinterface CommunicationLifeCycle

mailto:ftapi@list-group.com

it.list.jftinterface ActivityLifeCycle @ I.I ST

The 4 kind of objects (Filter, Query, Subscription and Transaction) that implement this interface:

« are created by makeSomething methods of their Context,
« share a common method to get the associated Connection,
« share a common failure—code for attempted operations when the associated Connection is not in a good ste

See Also:
CommunicationLifeCycle

Field Summary

static int RESULT_INVALID_CONNECTION_STATUS
Failure—code returned when an operation is requested whitin a nojt
correct status of the associated Connection.

Fields inherited from interface LifeCycle

RESULT_GENERIC_ERROR, RESULT_INVALID_STATUS, RESULT_OK, STATUS_INIT,
STATUS_RELEASED

Method Summary

Connection | getConnection()
Returns the associated Connection.

Methods inherited from interface CommunicationLifeCycle

getContext, getListener, getParam

Methods inherited from interface LifeCycle

enumcChilds, getStatus, release

Field Detall

RESULT _INVALID_CONNECTION_STATUS
static final int RESULT_INVALID_CONNECTION_STATUS
Failure—code returned when an operation is requested whitin a not correct status of the associated Connect

Typically an ActivityLifeCycle objects returns this failure—code when the associated Connection is not in the
Connection.STATUS CONNECTED status.

See Also:

it.list.jftinterface ActivityLifeCycle 35

& I.I ST it.list.jftinterface ActivityLifeCycle

Constant Field Values

Method Detail

getConnection
Connection getConnection()
Returns the associated Connection.

Each ActivityLifeCycle object has a Connection that created it (e.g. for a Subscription the associated
Connection is the first parameter of Context.makeSubscription()).
This method return this Connection.
Returns:
the associated Connection.
null is never returned.

Submit a bug or feature to FT\API Programming Support

it.list.jft
Interface EntityClassQuery

All Superinterfaces:
ActivityLifeCycle, CommunicationLifeCycle, LifeCycle

public interface EntityClassQuery
extends ActivityLifeCycle

Field Summary

static int STATUS_QUERIED_NO

static int STATUS_QUERIED_OK

static int STATUS_QUERYING

Fields inherited from interface ActivityLifeCycle
RESULT_INVALID_CONNECTION_STATUS

Fields inherited from interface LifeCycle

36 it.list.jftinterface ActivityLifeCycle

mailto:ftapi@list-group.com

it.list.jftinterface EntityClassQuery Q I_I ST

RESULT_GENERIC_ERROR, RESULT_INVALID_STATUS, RESULT_OK, STATUS_INIT,
STATUS_RELEASED

Method Summary

int|query()

Methods inherited from interface ActivityLifeCycle

getConnection

Methods inherited from interface CommunicationLifeCycle

getContext, getListener, getParam

Methods inherited from interface LifeCycle

enumChilds, getStatus, release

Field Detall

STATUS QUERYING
static final int STATUS_QUERYING

See Also:
Constant Field Values

STATUS_QUERIED_OK

static final int STATUS_QUERIED_OK

See Also:
Constant Field Values

STATUS_QUERIED_NO

static final int STATUS_QUERIED_NO

See Also:
Constant Field Values

it.list.jftinterface EntityClassQuery

37

& I.I ST it.list.jftinterface EntityClassQuery

‘Method Detall

query

int query()

Submit a bug or feature to FT\API Programming Support

it list.jft
Interface Filter

All Superinterfaces:
ActivityLifeCycle, CommunicationLifeCycle, LifeCycle

All Known Subinterfaces:
EntityFilter

public interface Filter
extends ActivityLifeCycle

A manner to restrict the set of values notified by a Subscription.

A filter may be used in a subscription to restrict (at the server level) the set of entities that will be notified to the
client application.

Filter Usage
A filter is defined by:

 an associated EntityClass,
« afilter type,
« and a filter definition,
all used during filter creation,
« afilter value,
used during filter extension.

The precise meaning of these 4 things depends from the particular filter and, in general, must be agreed between tl
client and the server.

In brief:
Filters are locally created by Context.makeFilter() in which the filter parameters are described by
FilterParam and the event listeners are described by FilterListener.

Once locally created a filter must be also server created, eventually server extended, used in the Subscriptic
and then server destroyed.

38 it.list.jftinterface EntityClassQuery

mailto:ftapi@list-group.com

Filter Lifecycle

it.list.jftinterface Filter @ I_l ST

Igarbage collected

I makeFiter() K(STATUS_RELEASED)

Ireleas w!/ ”1\

I/’ | STATUS_INIT

Icreate() fails

fcreate() ok

!

\I ! OnFitterCreate() bad r
CSTATUS_CREATING STATUS_DESTROYED)

J \
| 05
fonFitterCreate() ok I OnFitterDestroy()
\L \ ! destroy() ok \1/
(STATUS_CREATED /} KSTATUS_DESTROYING)

fdestroy() fails set() onFiterSet()

See Also:

Context.makeFilter(), FilterParam, FilterListener

Field Summary
static int STATUS_CREATED
Lifecycle status: Filter created on the server and ready to be used.
static int STATUS_CREATING
Lifecycle status: Filter waiting the create() server—answer.
static int STATUS DESTROYED
Lifecycle status: Filter destroyed into the server and ready to be released.
static int STATUS_DESTROYING
Lifecycle status: Filter waiting the destroy() server—answer.

it.list.jftinterface Filter

39

@ I_I ST it.list.jftinterface Filter

Fields inherited from interface ActivityLifeCycle
RESULT_INVALID_CONNECTION_STATUS

Fields inherited from interface LifeCycle

RESULT_GENERIC_ERROR, RESULT_INVALID_STATUS, RESULT_OK, STATUS_INIT,
STATUS_RELEASED

Method Summary

int |create()
Try to create this filter on the server.

int | destroy()
Try to destroy this filter on the server.

int | set(String value)
Try to extend this filter on the server.

Methods inherited from interface ActivityLifeCycle

getConnection

Methods inherited from interface CommunicationLifeCycle

getContext, getListener, getParam

Methods inherited from interface LifeCycle

enumcChilds, getStatus, release

Field Detall

STATUS_CREATING
static final int STATUS_CREATING

Lifecycle status: Filter waiting the create() server—answer.
This value may be returned by LifeCycle.getStatus().

Status Entry:
STATUS_INIT create() ok STATUS_CREATING.
Status Activities:
none: waiting an automatic onFilterCreate() call.
Status Exit:
STATUS_CREATINGonFilterCreate() ok STATUS_CREATED.

40 it.list.jftinterface Filter

it.list.jftinterface Filter

STATUS_CREATINGonFilterCreate() bad STATUS_DESTROYED.

See Also:
Filter lifecycle, Constant Field Values

S LIST

STATUS_CREATED

static final int STATUS_CREATED

Lifecycle status: Filter created on the server and ready to be used.
This value may be returned by LifeCycle.getStatus().

Status Entry:
STATUS_CREATINGonFilterCreate() ok STATUS_CREATED.
Status Activities:
« the filter may be eventually server extended,
« the filter may be used in Subscription.
Status Exit:
STATUS_CREATEDRestroy() ok STATUS_DESTROYING.

See Also:
Filter lifecycle, Constant Field Values

STATUS_DESTROYING

static final int STATUS_DESTROYING

Lifecycle status: Filter waiting the destroy() server—answer.
This value may be returned by LifeCycle.getStatus().

Status Entry:

STATUS_CREATEDRlestroy() ok STATUS_DESTROYING.
Status Activities:

none: waiting an automatic onFilterDestroy() call.
Status Exit:

STATUS_DESTROYIN®GnFilterDestroy() STATUS_DESTROYED.

See Also:
Filter lifecycle, Constant Field Values

STATUS_DESTROYED

static final int STATUS_DESTROYED

Lifecycle status: Filter destroyed into the server and ready to be released.
This value may be returned by LifeCycle.getStatus().

It's always a good practice to release a Filter in this status.

it.list.jftinterface Filter

41

@ LI ST it.list.jftinterface Filter

Status Entry:

STATUS_DESTROYIN®nFilterDestroy() STATUS_DESTROYED.
Status Activities:

LifeCycle.release().
Status Exit:

STATUS_DESTROYENDifeCycle.release() STATUS_RELEASED.

See Also:
Filter lifecycle, Constant Field Values

Method Detail

create

int create()
Try to create this filter on the server.
This method must be called only when

¢ the current status is STATUS_INIT,

¢ the associated Connection current status is Connection.STATUS_CONNECTED.
If this method invocation completed successfully,
then

¢ the create request was sent to server,
¢ the current status changed to STATUS_CREATING,
¢ when the server—answer will be available the FilterListener.onFilterCreate() will be
automatically called to handle it.
otherwise

¢ the client has rejected the create,
¢ the create request was not sent to the server,
¢ automatic call of FilterListener.onFilterCreate() will not be made,
¢ the current status remains unchanged.
In the latter case it is a good practice to release this Filter.
Returns:
« RESULT_OK if the operation completed successfully,
« RESULT_INVALID_STATUS if the current status is not STATUS_INIT,
« RESULT_INVALID_CONNECTION_STATUS if the associated Connection current status is
not Connection.STATUS CONNECTED,
* RESULT_GENERIC_ERROR otherwise.

set
int set(String value)

Try to extend this filter on the server.

42 it.list.jftinterface Filter

it.list.jftinterface Filter @ I_I ST

The filter extension is used to extend an already created filter.

The precise meaning of this value depends from the particular filter and, in general, it must be agreed betwe
the client and the server.

The server may subsequently returns a FilterSetEvent. RESULT_SYNTAX_ERROR or a
FilterSetEvent. RESULT_INVALID_FILTER_LEN failure—code if it does not understand this value
or if this value is too long.

This method must be called only when

O the current status is STATUS_CREATED,

0 the associated Connection current status is Connection.STATUS_CONNECTED.
If this method invocation completed successfully,
then

¢ the extension request was sent to server,
O when the server—answer will be available the FilterListener.onFilterSet() will be
automatically called to handle it.
otherwise

O the client has rejected the extension,

O the extension request was not sent to the server,

¢ automatic call of FilterListener.onFilterSet() will not be made.
In any case the current status remains unchanged.

Parameters:
value — filter extension of the new filter.
Returns:
« RESULT_OK if the operation completed successfully,
« RESULT_INVALID_STATUS if the current status is not STATUS_CREATED,
« RESULT_INVALID_CONNECTION_STATUS if the associated Connection current status is
not Connection.STATUS CONNECTED,
* RESULT_GENERIC_ERROR otherwise (e.g. the given filter value is null or empty).
destroy

int destroy()
Try to destroy this filter on the server.
This method must be called only when

O the current status is STATUS_CREATED,

O the associated Connection current status is Connection.STATUS_CONNECTED.
If this method invocation completed successfully,
then

O the destroy request was sent to server,

O the current status changed to STATUS_DESTROYING,

O when the server—answer will be available the FilterListener.onFilterDestroy() will be
automatically called to handle it.

it.list.jftinterface Filter 43

@ LI ST it.list.jft Interface EntityFilter

otherwise

O the client has rejected the destroy,
0 the destroy request was not sent to the server,
¢ automatic call of FilterListener.onFilterDestroy() will not be made,
¢ the current status remains unchanged.
It's not a bad practice to unconditionally release this Filter immediately after this method invocation without
handling the returned value.
Returns:
« RESULT_OK if the operation completed successfully,
« RESULT_INVALID_STATUS if the current status is not STATUS_CREATED,
« RESULT_INVALID_CONNECTION_STATUS if the associated Connection current status is
not Connection.STATUS CONNECTED,
« RESULT_GENERIC_ERROR otherwise.

Submit a bug or feature to FT\API Programming Support

it.list.jft
Interface EntityFilter

All Superinterfaces:
ActivityLifeCycle, CommunicationLifeCycle, Filter, LifeCycle

public interface EntityFilter
extends Filter

Usually, fasttrack serverices implements a default filter to restrict the set of values notified by a Subscription, based
on full or partial key values.

To use this you must set the filter type value as TYPE_ENTITYFILTER and the Entity Class ID used

by subscription. The filter returned by makeFilter can be safely casted to EntityFilter.

After that, it may be used in a subcription setting an empty EntityKey whill will be used to set filter key

values. Please note, you must create and set up different filters for different subscriptions; a filter is not allowed to b
used for many subscription simultaneously.

To change filter value you may call:

« add to add an entity key,
« del to remove an entity key from the filter,
« reset to remove all key values from the filter
Plese note, the set method doesn't perform any action for this class.

You should call flush after many filter operations to force any buffered action to be sent to the server.

See Also:
Filter, FilterParam, FilterListener

44 it.list.jft Interface EntityFilter

mailto:ftapi@list-group.com

it.list.jft Interface EntityFilter Q I_I ST

Field Summary

static int TYPE_ENTITYFILTER
The filter type value.

Fields inherited from interface Filter

STATUS_CREATED, STATUS_CREATING, STATUS_DESTROYED, STATUS_DESTROYING

Fields inherited from interface ActivityLifeCycle

RESULT_INVALID_CONNECTION_STATUS

Fields inherited from interface LifeCycle

RESULT_GENERIC_ERROR, RESULT_INVALID_STATUS, RESULT_OK, STATUS_INIT,

STATUS_RELEASED

Method Summary

int

add(EntityKey entityKey)
Add the EntityKey to the filter.

int

del(EntityKey entityKey)
Remove the EntityKey from the filter.

int

flush()
Send to the server any buffered filter action.

int

reset()
Remove all the key values from the filter.

Methods inherited from interface Filter

create, destroy, set

Methods inherited from interface ActivityLifeCycle

getConnection

Methods inherited from interface CommunicationLifeCycle

getContext, getListener, getParam

Methods inherited from interface LifeCycle

enumChilds, getStatus, release

Field Detall

it.list.jft Interface EntityFilter

45

\g LI ST it.list.jftinterface EntityFilter

TYPE_ENTITYFILTER
static final int TYPE_ENTITYFILTER
The filter type value.

See Also:
Constant Field Values

Method Detail

add

int add(EntityKey entityKey)

Add the EntityKey to the filter.
Parameters:
entityKey — the partial or full EntityKey.
Returns:
* RESULT_OK if the operation completed successfully,
« RESULT _INVALID_STATUS if the current status is not Filter.STATUS CREATED,
« RESULT _INVALID_CONNECTION_STATUS if the associated Connection current status is
not Connection.STATUS _CONNECTED,
* RESULT_GENERIC_ERROR otherwise.

del
int del(EntityKey entityKey)

Remove the EntityKey from the filter.

Parameters:
entityKey — the partial or full EntityKey.
Returns:
* RESULT_OK if the operation completed successfully,
« RESULT_INVALID_STATUS if the current status is not Filter. STATUS_CREATED,
« RESULT_INVALID_CONNECTION_STATUS if the associated Connection current status is
not Connection.STATUS CONNECTED,
* RESULT_GENERIC_ERROR otherwise.
reset
int reset()

Remove all the key values from the filter.
Returns:
« RESULT_OK if the operation completed successfully,
« RESULT_INVALID_STATUS if the current status is not Filter. STATUS_CREATED,

46 it.list.jftinterface EntityFilter

it.list.jftinterface EntityFilter @ I_I ST

« RESULT_INVALID_CONNECTION_STATUS if the associated Connection current status is
not Connection.STATUS CONNECTED,
« RESULT_GENERIC_ERROR otherwise.

flush
int flush()

Send to the server any buffered filter action.
Returns:
« RESULT_OK if the operation completed successfully,
« RESULT_INVALID_STATUS if the current status is not Filter. STATUS_CREATED,
« RESULT _INVALID_CONNECTION_STATUS if the associated Connection current status is
not Connection.STATUS CONNECTED,
* RESULT_GENERIC_ERROR otherwise.

Submit a bug or feature to FT\API Programming Support

it.list.jft
Interface Query

All Superinterfaces:
ActivityLifeCycle, CommunicationLifeCycle, LifeCycle

public interface Query
extends ActivityLifeCycle

A client's request to a server to obtain a set of entities (or rows) from its own Data Base.

An entire result-set (or a part of it, as eventually requested by queryRows(int, int)) is returned to the client
application, one row at time.

Query Usage
A query is defined by:

« a QuerylD identifier that identifies the query in the server,
 an optional Entity that is the optional argument of the query.

The precise meaning of the QueryID identifier must be agreed between the client and the server.
In brief:
Queries are locally created by Context.makeQuery() in which the query parameters are described by

QueryParam and the event listeners are described by QueryListener.

Once locally created a query must be also server created, eventually result—set partitioned, used and then
server destroyed.

it.list.jftinterface EntityFilter 47

mailto:ftapi@list-group.com

& LisT

Query Lifecycle

it.list.jftinterface Query

Igarbage collected

I makeQuery() K(STATUS_RELEASEDJ

freleas F’!/ ”1\‘

I destroy() ok
ST.&.TUS _CREATED \ ““ESTATUS_DESTROYING)
I destroy() fails gueryRows() onQueryNatify() onQueryRows()

I | STATUS_INIT

Icreate() fails

fcreate() ok

!

CSTATUS_CREATING\' IrST.&TUS_DESTRO\r‘ED)

J \
| i\

i/ onQueryCreate() ok fOnQueryDestroy()

!

FOnQueryCreate() bad

See Also:

Context.makeQuery(), QueryParam, QueryListener

Field Summary
static int STATUS_CREATED
Lifecycle status: Query created on the server and ready to be used.
static int STATUS_CREATING
Lifecycle status: Query waiting the create() server—answer.
static int STATUS DESTROYED
Lifecycle status: Query destroyed into the server and ready to be released.
static int STATUS_DESTROYING
Lifecycle status: Query waiting the destroy() server—answer.

48

it.list.jftinterface Query

it.list.jftinterface Query Q I_I ST

Fields inherited from interface ActivityLifeCycle
RESULT_INVALID_CONNECTION_STATUS

Fields inherited from interface LifeCycle

RESULT_GENERIC_ERROR, RESULT_INVALID_STATUS, RESULT_OK, STATUS_INIT,
STATUS_RELEASED

Method Summary

int |create()
Try to create this query on the server.

int |destroy()
Try to destroy this query on the server.

int |queryRows(int firstRow, int rowNumber)
Try to retrieve a subset of the result—set of this query from the server.

Methods inherited from interface ActivityLifeCycle

getConnection

Methods inherited from interface CommunicationLifeCycle

getContext, getListener, getParam

Methods inherited from interface LifeCycle

enumcChilds, getStatus, release

Field Detall

STATUS_CREATING
static final int STATUS_CREATING

Lifecycle status: Query waiting the create() server—answer.
This value may be returned by LifeCycle.getStatus().

Status Entry:
STATUS_INIT create() ok STATUS_CREATING.
Status Activities:
none: waiting an automatic onQueryCreate() call.
Status Exit:
STATUS_CREATINGonQueryCreate() ok STATUS_CREATED.

it.list.jftinterface Query 49

\g I_I ST it.list.jftinterface Query

STATUS_CREATINGonQueryCreate() bad STATUS_DESTROYED.

See Also:
Query lifecycle, Constant Field Values

STATUS_CREATED
static final int STATUS_CREATED

Lifecycle status: Query created on the server and ready to be used.
This value may be returned by LifeCycle.getStatus().

Status Entry:
STATUS_CREATINGonQueryCreate() ok STATUS_CREATED.
Status Activities:
« the query may be eventually result-set partitioned,
« the query is used by onQueryNotify() to retrieve the result-set one row at time.
Status Exit:
STATUS_CREATEDRestroy() ok STATUS_DESTROYING.

See Also:
Query lifecycle, Constant Field Values

STATUS_DESTROYING
static final int STATUS_DESTROYING

Lifecycle status: Query waiting the destroy() server—answer.
This value may be returned by LifeCycle.getStatus().

Status Entry:
STATUS_CREATEDRlestroy() ok STATUS_DESTROYING.
Status Activities:
none: waiting an automatic onQueryDestroy() call.
Status Exit:
STATUS_DESTROYINGnQueryDestroy() STATUS_DESTROYED.

See Also:
Query lifecycle, Constant Field Values

STATUS DESTROYED
static final int STATUS_DESTROYED

Lifecycle status: Query destroyed into the server and ready to be released.
This value may be returned by LifeCycle.getStatus().

It's always a good practice to release a Query in this status.

50 it.list.jftinterface Query

it.list.jftinterface Query @ I_I ST
Status Entry:

STATUS_DESTROYINGnQueryDestroy() STATUS_DESTROYED.
Status Activities:

LifeCycle.release().
Status Exit:

STATUS_DESTROYENDifeCycle.release() STATUS_RELEASED.

See Also:
Query lifecycle, Constant Field Values

Method Detail

create

int create()
Try to create this query on the server.
This method must be called only when

¢ the current status is STATUS_INIT,

¢ the associated Connection current status is Connection.STATUS_CONNECTED.
If this method invocation completed successfully,
then

0 the create request was sent to server,
¢ the current status changed to STATUS_CREATING,
O when the server—answer will be available the QueryListener.onQueryCreate() will be
automatically called to handle it.
otherwise

¢ the client has rejected the create,
¢ the create request was not sent to the server,
¢ automatic call of QueryListener.onQueryCreate() will not be made,
¢ the current status remains unchanged.
In the latter case it is a good practice to release this Query.

Returns:
* RESULT_OK if the operation completed successfully,
« RESULT_INVALID_STATUS if the current status is not STATUS_INIT,
* ActivityLifeCycle.RESULT_INVALID_CONNECTION_STATUS if the associated
Connection current status is not Connection.STATUS CONNECTED,
* RESULT_GENERIC_ERROR otherwise.
queryRows

int queryRows(int firstRow,
int rowNumber)

Try to retrieve a subset of the result-set of this query from the server.

it.list.jftinterface Query 51

=

LI ST it.list.jftinterface Query

The firstRow and rowNumber parameters describe the subset of result-set to be retrieved.
This method must be called only when

O the current status is STATUS_CREATED,

0 the associated Connection current status is Connection.STATUS_CONNECTED.
If this method invocation completed successfully,
then

O the subset request was sent to server,
O when the server—answer will be available the QueryListener.onQueryRows() will be
automatically called to handle it.
otherwise

O the client has rejected the subset request,
0 the subset request was not sent to the server,
¢ automatic call of QueryListener.onQueryRows() will not be made.
In any case the current status remains unchanged.
Parameters:
firstRow — index (1-based) of the first row to be retrieved.
rowNumber — number of rows to be retrieved.

Returns:
« RESULT_OK if the operation completed successfully,
« RESULT_INVALID_STATUS if the current status is not STATUS_CREATED,
« RESULT_INVALID_CONNECTION_STATUS if the associated Connection current status is
not Connection.STATUS CONNECTED,
« RESULT_GENERIC_ERROR otherwise (e.qg. firstRow <= 0 or rowNumber <= 0).
destroy

int destroy()

52

Try to destroy this query on the server.
This method must be called only when

O the current status is STATUS_CREATED,

O the associated Connection current status is Connection.STATUS_CONNECTED.
If this method invocation completed successfully,
then

O the destroy request was sent to server,
O the current status changed to STATUS_DESTROYING,
O when the server—answer will be available the QueryListener.onQueryDestroy() will be
automatically called to handle it.
otherwise

O the client has rejected the destroy,

0 the destroy request was not sent to the server,

¢ automatic call of QueryListener.onQueryDestroy() will not be made,
¢ the current status remains unchanged.

it.list.jftinterface Query

it.list.jft Interface Subscription @ I_I ST

It's not a bad practice to unconditionally release this Query immediately after this method invocation without
handling the returned value.
Returns:

« RESULT_OK if the operation completed successfully,

« RESULT_INVALID_STATUS if the current status is not STATUS_CREATED,

« RESULT_INVALID_CONNECTION_STATUS if the associated Connection current status is

not Connection.STATUS CONNECTED,
« RESULT_GENERIC_ERROR otherwise.

Submit a bug or feature to FT\API Programming Support

it.list.jft
Interface Subscription

All Superinterfaces:
ActivityLifeCycle, CommunicationLifeCycle, LifeCycle

public interface Subscription
extends ActivityLifeCycle

An arrangement with the server for receiving a continuing set of interesting entities of the same EntityClass.

Opening a subscription on a EntityClass of a Server entails both the initial acquisition of the Entitys of the
EntityClass of the Server and the subsequent notification of any additions or cancellations executed by the Server ¢
that EntityClass.

Special subscription modalities enable the acquisition of just a subset of the Entities of a EntityClass of the Server:
the section below.

Subscription Usage
A subscription is described by:

« an EntityClass on which the Subscription is made,
a couple (EntityClass Version, EntityClass TimeStamp) that refers the last past notification received by the
client (see Incremental Subscriptions below),
a query selection criteria used by the server to chose whose Entities must be received:
+ all entities, both past and current values,
+ all entities that match a partial EntityKey, both past and current values,
+ all entities, but only past values,
+ all entities, but only current values,
an optional EntityKey that describe the partial EntityKey to be used in case of the query selection criteria
indicates a partial EntityKey (see Partial Subscriptions below),
an optional filter to restrict (at the server level) the set of entities that will be notified,
a data transimission policy used by the server to eventually adapt the sending server speed with the recepti
client speed,
an optional mask to restrict (at the server level) the set of fields of entities that will be notified.

In brief:

it.list.jft Interface Subscription 53

mailto:ftapi@list-group.com

@ LI ST it.list.jftinterface Subscription

Subscriptions are created by Context.makeSubscription() in which the subscription parameters are
described by SubscriptionParam and the event listeners are described by SubscriptionListener.

Once created a subscription must be started with the server, used (eventually via refreshEntity) and then
stopped from the server.

Subscription Lifecycle

Igarbage collected

I makeSubscription() K(STATUS_RELEASED)

Ireleas w!/ ”1\

- I
|/)(STATUS_INIT
! start() fails
! start() ok
\L w FOnSubscriptionStart() bad
ESTATUS_ST.&RTING /J l\ST.*‘%TUS_STOPPED_)
[onSubscriptionStart() ok f OnSubscriptionStop()
\L \ I stop() ok \1/
(STATUS_STARTED) \STATUS_STOPPING j
I stop() fails RefreshEntity() onSubscriptionldle() onSubscriptionMotify()
. i

Incremental Subscriptions

This section outlines how to manage incremental subscriptions, in which the server is only required to send update
contents of an EntityClass, rather than sending all its records.

A client application can consequently keep a local data base aligned with the market server's, or more generally avi
processing data twice, by minimizing, at the same time, the volume of data to transfer and the needed time.

In particular, the subscription allows you to specify the pair of values (EntityClass Version, EntityClass TimeStamp)
i.e., respectively, the last version index of the EntityClass and the time—stamp of the last Entity (record) received of

54 it.list.jftinterface Subscription

it.list.jftinterface Subscription @ I_I ST

that class during the previous subscription.

Thus, if the version of the EntityClass maintained in the server coincides with the one supplied, only those entities
with a time stamp that is later than the one supplied will be sent.

On the other hand if the version of the class is earlier than the server's current one, then
SubscriptionStartEvent.isEntityClassReset() will be true . This indicates a general invalidation

of any entities from that EntityClass that have been archived until that moment. In the latter case it will not be possil
to proceed to an incremental acquisition, but all the entities in the EntityClass will have to be received.

In order to be able to make this data available, the client application has to maintain for each EntityCass the followir
information:

 Current time stamp,
« Current version.

The current time stamp can be maintained by updating local TimeStamp data whenever ACTION_ENTITY_ADD,
ACTION_ENTITY_RWT or ACTION_ENTITY_DEL operations are made, on the basis of the
SubscriptionNotifyEvent.getTimeStamp() returned value.

The current version can be maintained by acquiring the value of the version at the opening of the subscription by
SubscriptionStartEvent.getEntityClassVersionOnServer(), and updating it on every version

variation of the server class, this basically means at each notification of an ACTION_ENTITY_KIL operation, by
setting it to the SubscriptionNotifyEvent.getTimeStamp().getDateTime() value.

Remarks

ACTION_ENTITY_DEL and ACTION_ENTITY_KIL operations with
SubscriptionNotifyEvent.getKeylD() > 0, should be intended as notifications of (logical or physical}
cancellation of an individual entity at a server level. In this case the Entity returned by
SubscriptionNotifyEvent.getEntity() is generally undefined on any fields apart from those associated
with SubscriptionNotifyEvent.getKeyID().

Operations of ACTION_ENTITY_KIL with SubscriptionNotifyEvent.getKeyIBg 0 should be intended as the
physical cancellation of every entity in the specified EntityClass that has been acquired beforehand. In this case:
SubscriptionNotifyEvent.getEntity() == null.

Partial Subscriptions

This section outlines how to manage partial subscriptions, in which the server is requested to send only those entiti
in a EntityClass that satisfy certain constraints.

Partial subscriptions can be formulated in two manners:

* by setting the parameter SubscriptionParam.getQueryType() to the value
SubscriptionParam.QUERY_TYPE_SET and setting the parameter
SubscriptionParam.getEntityKey() to an appropriate EntityKey (an Entitykey where the number
of set segments is <= number of segments of the given KeyID),

« or by setting the parameter SubscriptionParam.getFilter() to a non—null value representing an
appropriate Filter in Filter. STATUS_CREATED status.

In the first case the server will send only Entities whose complete EntityKey match the given partial EntityKey.

it.list.jftinterface Subscription 55

@ LI ST it.list.jftinterface Subscription

In the latter case the server will send only Entities that satisfy the given filter.
Both manners cannot coexist.

See Also:
Context.makeSubscription(), SubscriptionParam, SubscriptionListener

Field Summary

static int STATUS STARTED
Lifecycle status: Subscription started and ready to be used.

static int STATUS_STARTING
Lifecycle status: Subscription waiting the start() server—answer.

static int STATUS_STOPPED
Lifecycle status: Subscription stopped with the server and ready to be released.

static int STATUS STOPPING
Lifecycle status: Subscription waiting the stop() server—-answer.

Fields inherited from interface ActivityLifeCycle

RESULT_INVALID_CONNECTION_STATUS

Fields inherited from interface LifeCycle

RESULT_GENERIC_ERROR, RESULT_INVALID_STATUS, RESULT_OK, STATUS_INIT,
STATUS_RELEASED

Method Summary

int [refreshEntity(EntityKey entityKey)
Request the server to re—publish a single complete (not masked) Entity.

it |start()
Try to start this subscription with the server.

int stopo
Try to stop this subscription with the server.

Methods inherited from interface ActivityLifeCycle

getConnection

Methods inherited from interface CommunicationLifeCycle

getContext, getListener, getParam

Methods inherited from interface LifeCycle

56 it.list.jftinterface Subscription

it.list.jftinterface Subscription @ I_I ST

enumChilds, getStatus, release

Field Detall

STATUS_STARTING
static final int STATUS_STARTING

Lifecycle status: Subscription waiting the start() server—answer.
This value may be returned by LifeCycle.getStatus().

Status Entry:
STATUS_INIT start() ok STATUS_STARTING.
Status Activities:
none: waiting an automatic onSubscriptionStart() call.
Status Exit:
STATUS_STARTINGonSubscriptionStart() ok STATUS_STARTED.
STATUS_STARTINGonSubscriptionStart() bad STATUS_STOPPED.

See Also:
Subscription lifecycle, Constant Field Values

STATUS_STARTED
static final int STATUS_STARTED

Lifecycle status: Subscription started and ready to be used.
This value may be returned by LifeCycle.getStatus().

Status Entry:
STATUS_STARTINGonSubscriptionStart() ok STATUS_STARTED.
Status Activities:
« the subscription is used by SubscriptionListener.onSubscriptionNotify() to
get all interesting entities,
« the refreshEntity() may be eventually used.
Status Exit:
STATUS_STARTEDstop() ok STATUS_STOPPING.

See Also:
Subscription lifecycle, Constant Field Values

STATUS_STOPPING

static final int STATUS_STOPPING

it.list.jftinterface Subscription 57

@ LI ST it.list.jftinterface Subscription

Lifecycle status: Subscription waiting the stop() server—-answer.
This value may be returned by LifeCycle.getStatus().

Status Entry:
STATUS_STARTEDstop() ok STATUS_STOPPING.
Status Activities:
none: waiting an automatic onSubscriptionStop() call.
Status Exit:
STATUS_STOPPINGonSubscriptionStop() STATUS_STOPPED.

See Also:
Subscription lifecycle, Constant Field Values

STATUS_STOPPED
static final int STATUS_STOPPED

Lifecycle status: Subscription stopped with the server and ready to be released.
This value may be returned by LifeCycle.getStatus().

It's always a good practice to release a Subscription in this status.

Status Entry:
STATUS_STOPPINGonSubscriptionStop() STATUS_STOPPED.
Status Activities:
LifeCycle.release().
Status Exit:
STATUS_STOPPEL.ifeCycle.release() STATUS_RELEASED.

See Also:
Subscription lifecycle, Constant Field Values

Method Detail

start
int start()
Try to start this subscription with the server.
This method must be called only when
O the current status is STATUS_INIT,
¢ the associated Connection current status is Connection.STATUS_CONNECTED.

If this method invocation completed successfully,
then

¢ the start request was sent to server,
O the current status changed to STATUS_STARTING,

58 it.list.jftinterface Subscription

it.list.jftinterface Subscription @ I_I ST

O when the server—answer will be available the
SunscriptionListener.onSubscriptionStart() will be automatically called to handle
it.

otherwise

O the client has rejected the start,
¢ the start request was not sent to the server,
¢ automatic call of SubscriptionListener.onSubscriptionStart() will not be made,
¢ the current status remains unchanged.
In the latter case it is a good practice to release this Subscription.

Returns:
« RESULT_OK if the operation completed successfully,
« RESULT_INVALID_STATUS if the current status is not STATUS_INIT,
« RESULT_INVALID_CONNECTION_STATUS if the associated Connection current status is
not Connection.STATUS CONNECTED,
* RESULT _GENERIC_ERROR otherwise.
refreshEntity

int refreshEntity(EntityKey entityKey)
Request the server to re—publish a single complete (not masked) Entity.
This method is useful with masked subscriptions to retrieve all fields of an interesting entity.
This method must be called only when

O the current status is STATUS_STARTED,

0 the associated Connection current status is Connection.STATUS _CONNECTED.
If this method invocation completed successfully,
then

¢ the re—publish request was sent to server,

O when the server—answer will be available (please note that a server—answer will be returned if and
only if the requested Entity exists in the server, otherwise there will not be any failure indication of
any sort!) the SubscriptionListener.onSubscriptionNotify() will be automatically
called to handle it and in this case all fields of SubscriptionNotifyEvent.getEntity()
will be available, even if this subscription is masked: the
SubscriptionNotifyEvent.isMasked() method may be used to discriminate between
maske and not—-masked entities.

otherwise

O the client has rejected the re—publish request,
0 the re—publish request was not sent to the server,
¢ automatic call of SubscriptionListener.onSubscriptionNotify() will not be made.
In any case the current status remains unchanged.
Parameters:
entityKey — the entitykey that identifies the requested entity.
Returns:
« RESULT_OK if the operation completed successfully,
« RESULT_INVALID_STATUS if the current status is not STATUS_STARTED,

it.list.jftinterface Subscription 59

=

I.I ST it.list.jftinterface Subscription

« RESULT_INVALID_CONNECTION_STATUS if the associated Connection current status is
not Connection.STATUS CONNECTED,

« RESULT_GENERIC_ERROR otherwise (e.g. the entityKey parameter is null or it refers
an EntityClass different from the subscribed class).

stop

int stop()

Try to stop this subscription with the server.
This method must be called only when

O the current status is STATUS_STARTED,

0 the associated Connection current status is Connection.STATUS _CONNECTED.
If this method invocation completed successfully,
then

¢ the stop request was sent to server,
O the current status changed to STATUS_STOPPING,
¢ when the server—answer will be available the
SubscriptionListener.onSubscriptionStop() will be automatically called to handle it.
otherwise

O the client has rejected the stop,
¢ the stop request was not sent to the server,
¢ automatic call of SubscriptionListener.onSubscriptionStop() will not be made,
¢ the current status remains unchanged.
It's not a bad practice to unconditionally release this Subscription immediately after this method invocation
without handling the returned value.
Returns:
« RESULT_OK if the operation completed successfully,
« RESULT_INVALID_STATUS if the current status is not STATUS_STARTED,
« RESULT _INVALID_CONNECTION_STATUS if the associated Connection current status is
not Connection.STATUS CONNECTED,
* RESULT_GENERIC_ERROR otherwise.

Submit a bug or feature to FT\API Programming Support

it.list.jft
Interface Transaction

All Superinterfaces:

ActivityLifeCycle, CommunicationLifeCycle, LifeCycle

public interface Transaction
extends ActivityLifeCycle

60

it.list.jftinterface Subscription

mailto:ftapi@list-group.com

it.list.jftinterface Transaction @ I_I ST

A client's request to the server to add, remove or modify an entity in its own Data Base.

Transaction Usage
A new transaction (i.e. a new client's request to the server) is defined by:

« the requested action: add or modify or logically remove or physically remove,
« the entity on which the action will be done,
« a KeylID of the EntityClass of that Entity
(all the KeylD fields of the Entity must be properly filled),
 an optional mask that describes which fields of the Entity must be filled,
« an eventual request to obtain an Entity inside the result that will be sent from the server.

Once the transaction is properly sent to the server:

« its TransactionIlD may be retrieved and saved for future use,
« its status may be queried using the query() method.

The TransactionID of a sent transaction may be saved, i.e. the 5 int values that represents the TransactionID may k
properly saved (see TransactionID for details). From these saved values it's possibile to recreate the original
TransactionID and then create a Transaction object, that represents this past transaction, using the following two
values:

« this past pending TransactionID,
 an eventual request to obtain an Entity inside the query result that will be sent from the server.

In this manner this created Transaction object may be used to query the status of this past Transaction to the serve
In brief:

Transactions are locally created by Context.makeTransaction() in which the transaction parameters

are described by TransactionParam and the event listeners are described by TransactionListener.

Once locally created a transaction may be sent to the server, and/or its status may be queried to the server.

It is also possibile to query the status of a past pending transaction if the programmer created a new
Transaction with a saved TransactionID of a sent transaction.

Transaction Lifecycle

it.list.jftinterface Transaction 61

@ LI ST it.list.jftinterface Transaction
@

!garbage collected

' makeTransaction() ()(STATUS_RELEASED j

! rvlmvu /I\

I | STATUS_INIT I

fsend() fails query() fails
—

fsend() ok query() ok

— fOnTransaction*() COMMITTED
£ |STATUS_FLY|NG | {STATUS_COMMITTED j

Iguery(),onTransaction*() FLYING

I

fonTransaction*() no FLYING and no COMMITTED

CSTATUS_AEIORTEDJ

A vy

See Also:
Context.makeTransaction(), TransactionParam, TransactionListener

Field Summary

static int STATUS_ABORTED
Lifecycle and Transaction status: Transaction completed unsuccessfully and feady
to be released.

static int STATUS_COMMITTED
Lifecycle and Transaction status: Transaction completed successfully and reddy to
be released.

static int STATUS _FLYING
Lifecycle and Transaction status: Transaction is flying waiting to become
STATUS _COMMITTED or STATUS_ABORTED.

62 it.list.jftinterface Transaction

it.list.jftinterface Transaction Q I_I ST

Fields inherited from interface ActivityLifeCycle
RESULT_INVALID_CONNECTION_STATUS

Fields inherited from interface LifeCycle

RESULT_GENERIC_ERROR, RESULT_INVALID_STATUS, RESULT_OK, STATUS_INIT,
STATUS_RELEASED

Method Summary

TransactionlD [getTransactionlD()
Returns the TransactionID of this (new or past) transaction.

int fquery()
Try to query the server for the status of this (new or past) transaction.

int |send()

Try to send this new transaction to the server.

Methods inherited from interface ActivityLifeCycle

getConnection

Methods inherited from interface CommunicationLifeCycle

getContext, getListener, getParam

Methods inherited from interface LifeCycle

enumcChilds, getStatus, release

Field Detall

STATUS_FLYING
static final int STATUS_FLYING

Lifecycle and Transaction status: Transaction is flying waiting to become STATUS_COMMITTED or
STATUS ABORTED.
This value may be returned by LifeCycle.getStatus().

Status Entry:
STATUS_INIT send() ok STATUS_FLYING.
STATUS_INIT query() ok STATUS_FLYING.
Status Activities:
query(),
or waiting an automatic onTransactionSend() call,
or waiting an automatic onTransactionQuery() call.

it.list.jftinterface Transaction 63

=

I.I ST it.list.jftinterface Transaction

Status Exit:
STATUS_FLYING onTransactionSend() bad STATUS_ABORTED.
STATUS_FLYING onTransactionQuery() RESULT_COMMITTEBTATUS _COMMITTED.
STATUS_FLYING onTransactionQuery() RESULT_INVALID_TRANSACTION_ID
STATUS_ABORTED.
STATUS_FLYING onTransactionQuery() RESULT_GENERIC_ERROR
STATUS_ABORTED.
STATUS_FLYING onTransactionQuery() RESULT_ABORTELSTATUS_ABORTED.

See Also:
Transaction lifecycle, Constant Field Values

STATUS_COMMITTED

static final int STATUS_COMMITTED

Lifecycle and Transaction status: Transaction completed successfully and ready to be released.
This value may be returned by LifeCycle.getStatus().

It's always a good practice to release a Transaction in this status.

Status Entry:

STATUS_FLYING onTransactionQuery() RESULT_COMMITTESTATUS_COMMITTED.
Status Activities:

LifeCycle.release().
Status Exit:

STATUS_COMMITTENRIfeCycle.release() STATUS_RELEASED.

See Also:
Transaction lifecycle, Constant Field Values

STATUS_ABORTED

static final int STATUS_ABORTED

64

Lifecycle and Transaction status: Transaction completed unsuccessfully and ready to be released.
This value may be returned by LifeCycle.getStatus().

It's always a good practice to release a Transaction in this status.

Status Entry:
STATUS_FLYING onTransactionSend() bad STATUS_ABORTED.
STATUS_FLYING onTransactionQuery() RESULT_INVALID_TRANSACTION_ID
STATUS_ABORTED.
STATUS_FLYING onTransactionQuery() RESULT_GENERIC_ERROR
STATUS_ABORTED.
STATUS_FLYING onTransactionQuery() RESULT_ABORTEIBTATUS_ABORTED.
Status Activities:
LifeCycle.release().
Status Exit:

it.list.jftinterface Transaction

it.list.jftinterface Transaction @ LI ST

STATUS_ABORTEDRIfeCycle.release() STATUS_RELEASED.

See Also:
Transaction lifecycle, Constant Field Values

Method Detail

send

int send()
Try to send this new transaction to the server.
This method must be called only when

¢ the current status is STATUS_INIT,
¢ the associated Connection current status is Connection.STATUS CONNECTED,
¢ this is a new transaction (i.e. the past TransactionID is null).

If this method invocation completed successfully,

then

¢ the transaction was sent to server,
O the current status changed to STATUS_FLYING,
O when the server—answer will be available the
TransactionListener.onTransactionSend() will be automatically called to handle it.
otherwise

¢ the client has rejected the send,
¢ the transaction was not sent to the server,
¢ automatic call of TransactionListener.onTransactionSend() will not be made,
¢ the current status remains unchanged.
In the latter case it is a good practice to release this Transaction.
Returns:
* RESULT_OK if the operation completed successfully,
* RESULT_INVALID_STATUS if the current status is not STATUS_INIT,
* ActivityLifeCycle.RESULT_INVALID_CONNECTION_STATUS if the associated
Connection current status is not Connection.STATUS CONNECTED,
* RESULT_GENERIC_ERROR otherwise
(e.g. the Entity is null).

query
int query()
Try to query the server for the status of this (new or past) transaction.

This method must be called only when

¢ the current status is STATUS _INIT or STATUS _FLYING,

it.list.jftinterface Transaction 65

@ LI ST it.list.jftinterface Transaction

0 the associated Connection current status is Connection.STATUS_CONNECTED,
¢ this transaction has a valid TransactionlID (getTransactionlID() is not null).

If this method invocation completed successfully,

then

¢ the query was sent to server,
O the current status changed to STATUS_FLYING,
O when the server—answer will be available the
TransactionListener.onTransactionQuery() will be automatically called to handle it.
otherwise

O the client has rejected the query,
¢ the query was not sent to the server,
¢ automatic call of TransactionListener.onTransactionQuery() will not be made,
¢ the current status remains unchanged.
In the latter case it is a good practice to release this Transaction.
Returns:
« RESULT_OK if the operation completed successfully,
« RESULT_INVALID_STATUS if the current status is not STATUS_INIT nor
STATUS FLYING,
* ActivityLifeCycle.RESULT_INVALID_CONNECTION_STATUS if the associated
Connection current status is not Connection.STATUS_CONNECTED,
« RESULT_GENERIC_ERROR otherwise
(e.g. getTransactionID() is null).

getTransactionID
TransactionID getTransactionID()
Returns the TransactionID of this (new or past) transaction.

If there is a valid past TransactionID then this method returns it, otherwise it returns the new
TransactionID that will be used by the send() method.
Returns:
the TransactionID of this (new or past) transaction.
null is returned when the past TransactionlD exists but it does not belongs to the
associated connection.

Submit a bug or feature to FT\API Programming Support

it.list.jft
Interface Connection

All Superinterfaces:
CommunicationLifeCycle, LifeCycle

public interface Connection
extends CommunicationLifeCycle

66 it.list.jftinterface Transaction

mailto:ftapi@list-group.com

it.list.jftinterface Connection @ I_I ST

Logical bidirectional channel with a server.

Within the same JFT application several Connections can be created and then opened with the same Server or witt
several Servers.

Connection Usage
Every new connection is described by:

* a pair remote host, remote port) that define the principal server to which the client must talk,

 an optional pair remote alternative host, remote alternative port) that define an optional server server to whic
the client must talk in the case the connection to the principal server failed,

« the transport-type to be used,

 an optional pair proxy host, proxy port) that describe the proxy to be used when the transport-type is not
TCP/IP,

« an indication about a compressed transmission between client and server,

 a charset used to code/decode the strings over the line,

 an optional market/service name to which the client must talk,

an indication of the type of activities that will be done on the connection,

a pair (user—name, password) that describe the user associated to the connection,

a ClientID that identifies the client,

a client application revision,

a client application signature,

an authorization file or an authorization key that allow a client to open and use a connection with a server.

In brief:
Connections are created by Context.makeConnection() in which the connection parameters are
described by ConnectionParam and the event listeners are described by ConnectionListener.

Once created a connection must be opened (attached to the server), used, and then closed (detached from
server).

Connection Lifecycle

it.list.jftinterface Connection 67

& LisT

See Also:

it.list.jftinterface Connection

?

/garbage collected

I makeConnection()

K(STATUS_RELEASED)

! "‘IH"M 4 /[\

frelease()

-‘\\
i |STATUS_]N]T I %TATUS_DISCONNECTED)é
fopen() fails
FOnConnectionLost()
fopen(lok L B
FOnConnectionOpen() bad
fOnConnectionClose()
. ™
(STATUS_CONNECTlNG)—
fonConnectionOpen() ok
\L \ fclose() ok l(
ESTATUS_CONNECTED) l\STATUS_DISCONNECTING j
i close() fails,Context makeActivityLifeCycle()
L A/
A

Context.makeConnection(), ConnectionParam, ConnectionListener

Field Summary

static int STATUS_CONNECTED
Lifecycle status: Connection connected to the server and ready to be used.
static int STATUS_CONNECTING

Lifecycle status: Connection waiting the open() server—answer.

68

it.list.jftinterface Connection

it.list.jftinterface Connection @ I_I ST

static int STATUS_DISCONNECTED
Lifecycle status: Connection no more connected to the server and ready to be releasq
static int STATUS_DISCONNECTING

Lifecycle status: Connection waiting the close() server-answer.

Fields inherited from interface LifeCycle

RESULT_GENERIC_ERROR, RESULT_INVALID_STATUS, RESULT_OK, STATUS_INIT,
STATUS_RELEASED

Method Summary

int |close()
Try to close this connection with a given server.

int | open()
Try to open this connection with a given server.

Methods inherited from interface CommunicationLifeCycle

getContext, getListener, getParam

Methods inherited from interface LifeCycle

enumcChilds, getStatus, release

Field Detall

STATUS_CONNECTING

static final int STATUS_CONNECTING

Lifecycle status: Connection waiting the open() server—answer.
This value may be returned by LifeCycle.getStatus().

Status Entry:
STATUS_INIT open() ok STATUS_CONNECTING.
Status Activities:
none: waiting an automatic onConnectionOpen() call.
Status Exit:
STATUS_CONNECTIN®GnConnectionOpen() ok STATUS_CONNECTED.

STATUS_CONNECTIN®nConnectionOpen() bad STATUS_DISCONNECTED.

STATUS_CONNECTIN®GnConnectionLost() STATUS_DISCONNECTED.

See Also:
Connection lifecycle, Constant Field Values

it.list.jftinterface Connection

69

d.

\g LI ST it.list.jftinterface Connection

STATUS_CONNECTED
static final int STATUS_CONNECTED

Lifecycle status: Connection connected to the server and ready to be used.
This value may be returned by LifeCycle.getStatus().

Status Entry:
STATUS_CONNECTIN®nConnectionOpen() ok STATUS_CONNECTED.
Status Activities:

« the connection may be used to create ActivityLifeCycle objects (with Context
methods makeSubscription(), makeQuery(), makeTransanction() and
makekFilter()),

« the connection may be used in TransactionID.belongsTo(),

« ActivityLifeCycle objects may be used (e.g. Subscription.start(),
Query.create(), etc...).

Status Exit:
STATUS_CONNECTEEBIose() ok STATUS_DISCONNECTING.
STATUS_CONNECTEBnConnectionLost() STATUS_DISCONNECTED.

See Also:
Connection lifecycle, Constant Field Values

STATUS_DISCONNECTING
static final int STATUS_DISCONNECTING

Lifecycle status: Connection waiting the close() server—-answer.
This value may be returned by LifeCycle.getStatus().

Status Entry:
STATUS_CONNECTEGEGIose() ok STATUS_DISCONNECTING.
Status Activities:
none: waiting an automatic onConnectionClose() call.
Status Exit:
STATUS_DISCONNECTIN®nConnectionClose() STATUS_DISCONNECTED.
STATUS_DISCONNECTIN®nConnectionLost() STATUS_DISCONNECTED.

See Also:
Connection lifecycle, Constant Field Values

STATUS_DISCONNECTED
static final int STATUS_DISCONNECTED

Lifecycle status: Connection no more connected to the server and ready to be released.
This value may be returned by LifeCycle.getStatus().

70 it.list.jftinterface Connection

it.list.jftinterface Connection @ I_I ST

It's always a good practice to release a Connection in this status.

Status Entry:
STATUS_DISCONNECTIN®nConnectionClose() STATUS_DISCONNECTED.
any status onConnectionLost() STATUS_DISCONNECTED.
Status Activities:
LifeCycle.release().
Status Exit:
STATUS_DISCONNECTENDIfeCycle.release() STATUS_RELEASED.

See Also:
Connection lifecycle, Constant Field Values

Method Detail

open
int open()
Try to open this connection with a given server.
This method must be called only when current status is STATUS_INIT.

If this method invocation completed successfully,
then

¢ the open request was sent to server,
¢ the current status changed to STATUS_CONNECTING,
¢ when the server—answer will be available the ConnectionListener.onConnectionOpen()
will be automatically called to handle it.
otherwise

¢ the client has rejected the open,
¢ the open request was not sent to the server,
¢ automatic call of ConnectionListener.onConnectionOpen() will not be made,
¢ the current status remains unchanged.
In the latter case it is a good practice to release this Connection.
Returns:
« RESULT_OK if the operation completed successfully,
* LifeCycle.RESULT_INVALID_STATUS if the current status is not STATUS_INIT,
* RESULT_GENERIC_ERROR otherwise
(e.g. some server name (as host or the optionals alternative host and proxy host) is
unresolvable).

close
int close()

Try to close this connection with a given server.

it.list.jftinterface Connection 71

=

I.I ST it.list.jft Interface MulticastConnection

This method must be called only when current status is STATUS_CONNECTED.

If this method invocation completed successfully,
then

O the close request was sent to server,
O the current status changed to STATUS_DISCONNECTING,
O when the server—answer will be available the
ConnectionListener.onConnectionClose() will be automatically called to handle it.
otherwise

O the client has rejected the close,
O the close request was not sent to the server,
¢ automatic call of ConnectionListener.onConnectionClose() will not be made,
¢ the current status remains unchanged.
It's not a bad practice to unconditionally release this Connection immediately after this method invocation
without handling the returned value.
Returns:
« RESULT_OK if the operation completed successfully,
« LifeCycle.RESULT_INVALID_STATUS if the current status is not
STATUS_CONNECTED,
« RESULT_GENERIC_ERROR otherwise.

Submit a bug or feature to FT\API Programming Support

it.list.jft
Interface MulticastConnection

All Superinterfaces:

CommunicationLifeCycle, LifeCycle

public interface MulticastConnection
extends CommunicationLifeCycle

Field Summary

static int STATUS_CONNECTED

static int STATUS_DISCONNECTED

Fields inherited from interface LifeCycle

RESULT_GENERIC_ERROR, RESULT_INVALID_STATUS, RESULT_OK, STATUS_INIT,
STATUS_RELEASED

72

it.list.jft Interface MulticastConnection

mailto:ftapi@list-group.com

it.list.jftinterface MulticastConnection

& LisT

Method Summary

int

close()

int

enableNotify(int entityClassID)

int

open()

Methods inherited from interface CommunicationLifeCycle

getContext, getListener, getParam

Methods inherited from interface LifeCycle

enumcChilds, getStatus, release

Field Detall

STATUS_CONNECTED
static final int STATUS_CONNECTED

See Also:

Constant Field Values

STATUS_DISCONNECTED

static final int STATUS_DISCONNECTED

See Also:

Constant Field Values

Method Detail

open

int open()

it.list.jftinterface MulticastConnection

73

& I.I ST it.list.jftinterface MulticastConnection

close

int close()

enableNotify

int enableNotify(int entityClassID)

Submit a bug or feature to FT\API Programming Support

it.list.jft
Interface Context

All Superinterfaces:
LifeCycle

public interface Context
extends LifeCycle

Container and factory of inter-related communication objects.

Within the same JFT application several Contexts can be created and then used to interact with one or more FastT!
servers.

This interface contains methods to create CommunicationLifeCycle objects: i.e. Connections and their related
ActivityLifeCycle objects:

« Filter,
* Query,
« Subscription,
» Transaction.
Methods to create their parameters are provided as well.

Please note that each Connection and its related ActivityLifeCycle objects are enforced to exist in the same Contex
e.g. it's not possible to create a subscription in a Context that does not contains the associated Connection.

Context Lifecycle

74 it.list.jftinterface MulticastConnection

mailto:ftapi@list-group.com

See Also:

it.list.jftinterface MulticastConnection @ I.I ST

! garbage collected

I makeContext() K CSTATUS_RELEASED j
! n«lmv‘l_l/_/

' ™
frelease()
STATUS_INIT
I makeCommunicationLifeCycle()
A vy

JFT.makeContext(), Acceptable Values

Field Summary

Fields inherited from interface LifeCycle

STATUS_RELEASED

RESULT_GENERIC_ERROR, RESULT_INVALID_STATUS, RESULT_OK, STATUS_INIT,

Method Summary

Connection

makeConnection(ConnectionParam param,
ConnectionListener listener)
Create and returns a new connection.

ConnectionParam

makeConnectionParam()
Create and returns a new connection parameter container.

EntityClassQuery

makeEntityClassQuery(Connection connection,
EntityClassQueryParam param,
EntityClassQueryListener listener)

EntityClassQueryParam

makeEntityClassQueryParam()

it.list.jftinterface MulticastConnection 75

\g LI ST it.list.jftinterface Context

Filter [makeFilter(Connection connection, FilterParam param,
FilterListener listener)
Create and returns a new filter.

FilterParam | makeFilterParam()
Create and returns a new filter parameter container.

MulticastConnection makeMulticastConnection(MulticastConnectionParam param,
MulticastConnectionListener listener)

MulticastConnectionParam makeMulticastConnectionParam()

Query [makeQuery(Connection connection, QueryParam param,
QueryListener listener)
Create and returns a new query.

QueryParam [makeQueryParam()
Create and returns a new query parameter container.

Subscription makeSubscription(Connection connection,
SubscriptionParam param, SubscriptionListener listener)
Create and returns a new subscription.

SubscriptionParam makeSubscriptionParam()
Create and returns a new subscription parameter container.

Transaction | makeTransaction(Connection connection,
TransactionParam param, TransactionListener listener)
Create and returns a new transaction.

TransactionParam | makeTransactionParam()
Create and returns a new transaction parameter container.

Methods inherited from interface LifeCycle

enumcChilds, getStatus, release

Method Detail

makeConnection

Connection makeConnection(ConnectionParam param,
ConnectionListener listener)
throws NullPointerException,
lllegalArgumentException,
lllegalStateException

Create and returns a new connection.

The current status of the returned connection is STATUS_INIT.

76 it.list.jftinterface Context

it.list.jftinterface Context @ I_I ST

At the return of this method the given ConnectionParam parameter container is bound.
Parameters:
param — connection parameter container.
listener — connection listener.
Returns:
the new connection.
null is never returned.
Throws:
NullPointerException — if some parameter is null.
lllegalArgumentException — if Param contains un—acceptable values.
lllegalStateException - if the current status is not STATUS_INIT.
See Also:
Acceptable Values

makeConnectionParam

ConnectionParam makeConnectionParam()
Create and returns a new connection parameter container.

Each parameter of the returned container has its value equal to default-value as described in the
corresponding ConnectionParam.getSomething description.
Returns:

the new connection parameter container.

null is returned when the current status is not STATUS_INIT.

makeFilter

Filter makeFilter(Connection connection,
FilterParam param,
FilterListener listener)
throws NullPointerException,
lllegalArgumentException,
lllegalStateException

Create and returns a new filter.
The current status of the returned filter is STATUS_INIT.

At the return of this method the given FilterParam parameter container is bound.
Parameters:
connection — associated connection.
param - filter parameter container.
listener — filter listener.
Returns:
the new filter.
null is never returned.
Throws:
NullPointerException — if some parameter is null.
IllegalArgumentException — if Param contains un—acceptable values,
or the given connection is not associated to this context.

it.list.jftinterface Context l

@ LI ST it.list.jftinterface Context

lllegalStateException - if the current status is not STATUS_INIT,

or the status of the given connection is not Connection.STATUS_CONNECTED.
See Also:

Acceptable Values

makeFilterParam
FilterParam makeFilterParam()
Create and returns a new filter parameter container.

Each parameter of the returned container has its value equal to default-value as described in the
corresponding FilterParam.getSomething description.
Returns:

the new filter parameter container.

null is returned when the current status is not STATUS_INIT.

makeQuery

Query makeQuery(Connection connection,
QueryParam param,
QueryListener listener)
throws NullPointerException,
IllegalArgumentException,
lllegalStateException

Create and returns a new query.
The current status of the returned query is STATUS_INIT.

At the return of this method the given QueryParam parameter container is bound.
Parameters:
connection — associated connection.
param — query parameter container.
listener — query listener.
Returns:
the new query.
null is never returned.
Throws:
NullPointerException — if some parameter is null.
IllegalArgumentException — if Param contains un—acceptable values,
or the given connection is not associated to this context.
IllegalStateException - if the current status is not STATUS_INIT,
or the status of the given connection is not Connection.STATUS CONNECTED.
See Also:
Acceptable Values

78 it.list.jftinterface Context

it.list.jftinterface Context @ I_I ST

makeQueryParam
QueryParam makeQueryParam()
Create and returns a new query parameter container.

Each parameter of the returned container has its value equal to default-value as described in the
corresponding QueryParam.getSomething description.
Returns:

the new query parameter container.

null is returned when the current status is not STATUS_INIT.

makeSubscription

Subscription makeSubscription(Connection connection,
SubscriptionParam param,
SubscriptionListener listener)
throws NullPointerException,
lllegalArgumentException,
lllegalStateException

Create and returns a new subscription.
The current status of the returned subscription is STATUS_INIT.

At the return of this method the given SubscriptionParam parameter container is bound.
Parameters:

connection — associated connection.

param — subscription parameter container.

listener — subscription listener.
Returns:

the new subscription.

null is never returned.
Throws:

NullPointerException — if some parameter is null.

lllegalArgumentException — if Param contains un—acceptable values,

or the given connection is not associated to this context.

lllegalStateException - if the current status is not STATUS_INIT,

or the status of the given connection is not Connection.STATUS CONNECTED.
See Also:

Acceptable Values

makeSubscriptionParam
SubscriptionParam makeSubscriptionParam()
Create and returns a new subscription parameter container.
Each parameter of the returned container has its value equal to default-value as described in the

corresponding SubscriptionParam.getSomething description.
Returns:

it.list.jftinterface Context 79

@ LI ST it.list.jftinterface Context

the new subscription parameter container.
null is returned when the current status is not STATUS_INIT.

makeTransaction

Transaction makeTransaction(Connection connection,
TransactionParam param,
TransactionListener listener)
throws NullPointerException,
lllegalArgumentException,
lllegalStateException

Create and returns a new transaction.
The current status of the returned transaction is STATUS_INIT.

At the return of this method the given TransactionParam parameter container is bound.
Parameters:

connection — associated connection.

param — transaction parameter container.

listener — transaction listener.
Returns:

the new transaction.

null is never returned.
Throws:

NullPointerException — if some parameter is null.

lllegalArgumentException — if Param contains un—acceptable values,

or the given connection is not associated to this context.

lllegalStateException - if the current status is not STATUS_INIT,

or the status of the given connection is not Connection.STATUS CONNECTED.
See Also:

Acceptable Values

makeTransactionParam
TransactionParam makeTransactionParam()
Create and returns a new transaction parameter container.

Each parameter of the returned container has its value equal to default-value as described in the
corresponding TransactionParam.getSomething description.
Returns:

the new transaction parameter container.

null is returned when the current status is not STATUS_INIT.

makeEntityClassQuery

EntityClassQuery makeEntityClassQuery(Connection connection,
EntityClassQueryParam param,
EntityClassQueryListener listener)

80 it.list.jftinterface Context

it.list.jftinterface Context Q I_I ST

throws NullPointerException,
lllegalArgumentException,
lllegalStateException

Throws:
NullPointerException
IllegalArgumentException
IllegalStateException

makeEntityClassQueryParam

EntityClassQueryParam makeEntityClassQueryParam()

makeMulticastConnection

MulticastConnection makeMulticastConnection(MulticastConnectionParam param,
MulticastConnectionListener listener)
throws NullPointerException,
lllegalArgumentException,
lllegalStateException
Throws:

NullPointerException

lllegalArgumentException

lllegalStateException

makeMulticastConnectionParam

MulticastConnectionParam makeMulticastConnectionParam()

Submit a bug or feature to FT\API Programming Support

it.list.jft
Interface JFT

All Superinterfaces:
LifeCycle

public interface JFT
extends LifeCycle

Main basic library interface to use within JFT/API.
Use this interface to initialize, configure and start to use the library.

A singleton of this interface is available in the THIS constant.
Using this constant it's possible to access any functionality exposed by this library.

To start use this library read the JFT/Api Introduction or watch the data models (Package it.list.jft Data Model and
Package it.list.jft.event Data Model) or just watch a few Java example programs.

it.list.jftinterface Context 81

mailto:ftapi@list-group.com

\g LI ST it.list.jftinterface JFT

JFT Exceptions

Almost all the methods of this library does not throw any exceptions of any sort: they instead return appropriate valt
to indicate any error condition found. There are very few exceptions to this policy:

« the alone method addFieldByName() in the Mask interface,
« all setSomething methods in Param sub-interfaces,
« all makeSomething methods in Context.

Even in this case the totality of thrown exceptions are unchecked (subclasses of RuntimeException), so they do
not need to be catched or declared in the throws clause of method signature.

The JFT library does not throws any checked exception.
JFT Other Details

See JFT Implementation Threads and JFT Synchronization for details on implementation threads and synchronizati

JFT lifecycle

82 it.list.jftinterface JFT

it.list.jftinterface JFT

¢ ?

fgarbage collected

FJFT.THIS created by the Java Loader (?(STATUS_RELEASED

! rvlwd‘e!/ ”f‘

& LIST

| STATUS_INIT I

finit()

.

KE'STATUS_CONF IGURING j
! rm_utvn_|/

TN

i start() lisRegistered() getEntityClass()

/; l STATUS _RUNNING I

I makeSomething()

_ A

See Also:

JFT/Api Introduction, JFT Application Examples, LifeCycle, JFT Implementation Threads, JFT

Synchronization

Field Summary

it.list.jftinterface JFT

static int MODE_MULTI_THREAD
Threading mode: multi-thread.
static int MODE_NO_ENTITY_CLONING
Disable entity cloning in the library.
static int STATUS_CONFIGURING
Lifecycle status: JFT initialized: ready to be configured and then started.
static int

83

S LIST

it.list.jftinterface JFT

STATUS_RUNNING

Lifecycle status: JFT started: ready to be used and then released.

static JFT

THIS
Reference to the JFT singleton.

static int

TRACE_LEVEL_DEBUG

Trace level: messages in bold are traced:

ERROR, FATAL.

DEBUG, TEST, INFO, WARN

static int

TRACE_LEVEL_ERROR

Trace level: messages in bold are traced:

ERROR, FATAL.

DEBUG, TEST, INFO, WARN

static int

TRACE_LEVEL_FATAL

Trace level: messages in bold are traced:

ERROR, FATAL.

DEBUG, TEST, INFO, WARN

static int

TRACE_LEVEL_INFO

Trace level: messages in bold are traced:

ERROR, FATAL.

DEBUG, TEST, INFO, WARN

static int

TRACE_LEVEL_TEST

Trace level: messages in bold are traced:

ERROR, FATAL.

DEBUG, TEST, INFO, WARN

static int

TRACE_LEVEL_WARN

Trace level: messages in bold are traced:

ERROR, FATAL.

DEBUG, TEST, INFO, WARN

bE.

Fields inherited from interface LifeCycle
RESULT_GENERIC_ERROR, RESULT_INVALID_STATUS, RESULT_OK, STATUS_INIT,
STATUS RELEASED
Method Summary
EntityClass | getEntityClass(int EntityClassID)
Returns the registered EntityClass corresponding to the given EntityClassID.
EntityClass [getEntityClass(String EntityClassName)
Returns the registered EntityClass corresponding to the given EntityClass Name.
String | getLibraryVersion()
Returns the version of this library.
int linit(int mode)
Initialize the library (with a specific threading model) and start the configuration phas
boolean |isRegistered(int EntityClassID)
Returns the indication that a given EntityClass (identified by an EntityClassID) has
been registered.
Context | makeContext()
Create and returns a new context.
84 it.list.jftinterface JFT

it.list.jftinterface JFT @ I_I ST

Mask

makeEmptyMask(int entityClassID)
Create and returns a new empty mask for a given Entity Class.

TimeStamp

makeTimeStamp(int dateTime, int prog)
Create and returns a new TimeStamp.

TransactionID

makeTransactionID(int clientID, int clientServicelD,
int businessServicelD, TimeStamp timeStamp)
Create and returns a new TransactionID.

int

register(EntityClass entityClass)
Register another EntityClass augmenting the number of the classes that can be
manipulated by the library.

void

setExitOnListenerException(boolean enable)
Enable/Disable the automatically termination of the JVM when an exception is throw
not catch inside a Listener method.

void

setTrace(boolean enable)
Enable/Disable the library trace.

int

setTracelLevel(int traceLevel)
Set the mimun displayable level of the library trace.

int

setTraceMode(boolean autoFlush, File file)
Set a file tracer.

int

setTraceMode(boolean autoFlush, PrintWriter writer)
Set a printwriter (file, standard output/error, socketd, etc...) tracer.

int

setTraceMode(Tracer tracer)
Set a customer tracer.

int

start()
End the configuration phase and start to use the library.

void

trace(String module, int traceLevel, String message)
Trace a given message.

Methods inherited from interface LifeCycle

enumChilds, getStatus, release

Field Detall

THIS

static final JFT

THIS

Reference to the JFT singleton.

it.list.jftinterface JFT 85

n and

@ LI ST it.list.jftinterface JFT

STATUS_CONFIGURING

static final int STATUS_CONFIGURING

Lifecycle status: JFT initialized: ready to be configured and then started.
This value may be returned by LifeCycle.getStatus().

Status Entry:

LifeCycle.STATUS_INIT init() ok STATUS_CONFIGURING.

Status Activities:

the JFT libray may be configured via the register() method.
Status Exit:

STATUS_CONFIGURINGstart() ok STATUS_RUNNING.

See Also:
JFT lifecycle, Constant Field Values

STATUS_RUNNING

static final int STATUS_RUNNING

Lifecycle status: JFT started: ready to be used and then released.
This value may be returned by LifeCycle.getStatus().

Status Entry:
STATUS_CONFIGURINGstart() ok STATUS_RUNNING.
Status Activities:

the JFT libray may be used via the makeContext() or makeTimeStamp() or

makeTransactionID() or makeEmptyMask() methods.
Status Exit:

STATUS_RUNNINGQ.ifeCycle.release() LifeCycle.STATUS_RELEASED.

See Also:
JFT lifecycle, Constant Field Values

TRACE_LEVEL_DEBUG

static final int TRACE_LEVEL_DEBUG

Trace level: messages in bold are traced: DEBUG, TEST, INFO, WARN, ERROR, FATAL.

This value may be used as argument of setTracelLevel(int).

See Also:
Constant Field Values

86

it.list.jftinterface JFT

it.list.jftinterface JFT Q I_I ST

TRACE_LEVEL_TEST

static final int TRACE_LEVEL_TEST
Trace level: messages in bold are traced: DEBUG, TEST, INFO, WARN, ERROR, FATAL.
This value may be used as argument of setTracelLevel(int).

See Also:
Constant Field Values

TRACE_LEVEL INFO

static final int TRACE_LEVEL_INFO
Trace level: messages in bold are traced: DEBUG, TEST, INFO, WARN, ERROR, FATAL.
This value may be used as argument of setTracelLevel(int).

See Also:
Constant Field Values

TRACE_LEVEL_WARN

static final int TRACE_LEVEL_WARN
Trace level: messages in bold are traced: DEBUG, TEST, INFO, WARN, ERROR, FATAL.
This value may be used as argument of setTracelLevel(int).

See Also:
Constant Field Values

TRACE_LEVEL _ERROR

static final int TRACE_LEVEL_ERROR
Trace level: messages in bold are traced: DEBUG, TEST, INFO, WARN, ERROR, FATAL.
This value may be used as argument of setTracelLevel(int).

See Also:
Constant Field Values

TRACE_LEVEL_FATAL

static final int TRACE_LEVEL_FATAL

it.list.jftinterface JFT 87

@ LI ST it.list.jftinterface JFT

Trace level: messages in bold are traced: DEBUG, TEST, INFO, WARN, ERROR, FATAL.
This value may be used as argument of setTracelLevel(int).

See Also:
Constant Field Values

MODE_MULTI_THREAD

static final int MODE_MULTI_THREAD
Threading mode: multi-thread.
Details on threads and synchronization are available in JFT Implementation Threads
This value may be used as argument of init(int).

See Also:
JFT Implementation Threads, Constant Field Values

MODE_NO_ENTITY_CLONING
static final int MODE_NO_ENTITY_CLONING
Disable entity cloning in the library.

Usually library functions return a safe copy of an entity in its method (especially in the callback events). For
this reason users can without any problems safely modify them or store their reference if needed. In case of
heavy subscription load, it is possibile to improve the library performance using this flag; in this case entities
coming from callback events are valid inside the callback event context, whereas out of that context their
value can be changed using library calls (however you can clone them in the event if you want to save their

value)
This value may be used as argument of init(int).

See Also:
Constant Field Values

Method Detail

getLibraryVersion

String getLibraryVersion()
Returns the version of this library.
Returns:

the version of this library.
null is never returned.

88 it.list.jftinterface JFT

it.list.jftinterface JFT @ I_I ST

setExitOnListenerException

void setExitOnListenerException(boolean enable)

Enable/Disable the automatically termination of the JVM when an exception is thrown and not catch inside &
Listener method.

By default (if this method is never invoked) the automatically invocation of System.exit(0) is enabled.
Parameters:
enable - true or false to enable or disable this switch.

setTrace
void setTrace(boolean enable)
Enable/Disable the library trace.
By default (if this method is never invoked) the trace is disabled.

Parameters:
enable — true or false to enable or disable the trace.

setTracelLevel
int setTraceLevel(int traceLevel)
Set the mimun displayable level of the library trace.

Available trace level are: TRACE_LEVEL_DEBUG, TRACE_LEVEL_TEST, TRACE_LEVEL_INFO,
TRACE_LEVEL_WARN, TRACE_LEVEL_ERROR and TRACE_LEVEL_FATAL.

By default (if this method is never invoked) the trace level is TRACE_LEVEL WARN.
Parameters:
traceLevel — one of the TRACE_LEVEL constants.
Returns:
« LifeCycle.RESULT_OK if the operation completed successfully,
« LifeCycle.RESULT_GENERIC_ERROR otherwise (e.g. the traceLevel parameter is
bad).

setTraceMode
int setTraceMode(Tracer tracer)
Set a customer tracer.

The current customer tracer (the last set by this method or none if this method was never invoked) is replac:
with the given customer tracer.

it.list.jftinterface JFT 89

& LI ST it.list.jftinterface JFT

A customer tracer is described by the Tracer interface in which the Tracer.onTrace() method is
automatically invoked whenever the trace is enabled and the current trace-message has a level greater or
eqgual than the current trace level.
Parameters:
tracer — customer tracer (it may be null)

Returns:

« LifeCycle.RESULT_OK if the operation completed successfully,

* LifeCycle.RESULT_GENERIC_ERROR otherwise. is null).

setTraceMode

int setTraceMode(boolean autoFlush,
File file)

Set a file tracer.

The current file tracer (the last set by this method or none if this method was never invoked) is replaced witf
the given file tracer.

If the trace is enabled a file tracer allow to trace in a file all trace—-messages that have a level greater or equ
than the current trace level.
Parameters:

autoFlush - true/false to enable/disable flush after every trace message.

file — file (it may be null) on which the trace messages are appended.

Returns:
« LifeCycle.RESULT_OK if the operation completed successfully,
« LifeCycle.RESULT_GENERIC_ERROR otherwise (e.g. the file parameter refers an
unexisting/unaccessible file).
setTraceMode

int setTraceMode(boolean autoFlush,
PrintWriter writer)

Set a printwriter (file, standard output/error, socketd, etc...) tracer.

The current printwriter tracer (the last set by this method or none if this method was never invoked) is
replaced with the given printwriter tracer.

If the trace is enabled a printwriter tracer allow to trace in a PrintWriter all trace-messages that have a level
greater or equal than the current trace level.
Parameters:
autoFlush - true/false to enable/disable flush after every trace message.
writer — PrintWriter (it may be null) on which the trace messages are appended.
Returns:
« LifeCycle.RESULT_OK if the operation completed successfully,
« LifeCycle.RESULT_GENERIC_ERROR otherwise (e.g. the writer parameter refers an
unexisting/unaccessible writer).

90 it.list.jftinterface JFT

http://java.sun.com/j2se/1.4.1/docs/api/java/io/File.html#canWrite()

it.list.jftinterface JFT @ I_I ST

trace

void trace(String module,
int tracelLevel,
String message)

Trace a given message.

The message will appear on the requested trace, depending on setting controlled by setTrace(boolean),
setTracelLevel() and the required setTraceMode().
Parameters:

module - caller module name.

traceLevel — one of the TRACE_LEVEL constants.

message — not newline—terminated message to be traced.

init

int init(int mode)
Initialize the library (with a specific threading model) and start the configuration phase.
This method must be called only when current status is LifeCycle.STATUS_INIT, i.e. this method must
be called before any other methods invocations (except for getLibraryVersion() and all trace methods

that can be called at every time).

If this method invocation completed successfully, the current status changed to STATUS_CONFIGURING,
otherwise it remains unchanged.

Parameters:
mode - threading mode (only MODE_MULTI_THREAD currently allowed).
Returns:
* LifeCycle.RESULT_OK if the operation completed successfully,
* LifeCycle.RESULT_INVALID_STATUS if the current status is not
LifeCycle.STATUS_INIT,
* LifeCycle.RESULT_GENERIC_ERROR otherwise (e.g. the mode parameter is not
MODE_MULTI_THREAD).
register

int register(EntityClass entityClass)

Register another EntityClass augmenting the number of the classes that can be manipulated by the
library.

This method must be called only when current status is STATUS_CONFIGURING, i.e. in the configuration
phase between the init(int) and start() invocations.

This method must be called for each market or service EntityClass which is referenced or used in the rest of
the application. To facilitate this the FastTrack libraries are equipped with several market/service libraries
each containing the Java EntityClasses of the market/service structures.

Parameters:

it.list.jftinterface JFT 91

@ LI ST it.list.jftinterface JFT

entityClass — EntityClass to be registered.
Returns:
« LifeCycle.RESULT_OK if the operation completed successfully,
« LifeCycle.RESULT_INVALID_STATUS if the current status is not
STATUS_CONFIGURING,
« LifeCycle.RESULT_GENERIC_ERROR otherwise (e.g. the entityClass parameter
does not refer a valid EntityClass).

iIsRegistered
boolean isRegistered(int EntityClassID)

Returns the indication that a given EntityClass (identified by an EntityClassID) has been registered.
Parameters:
EntityClassID - ID of the EntityClass to be checked.
Returns:
the indication that a given EntityClass (identified by an EntityClassID) has been registered.
false is returned when the current status is LifeCycle.STATUS_INIT.

getEntityClass
EntityClass getEntityClass(int EntityClassID)

Returns the registered EntityClass corresponding to the given EntityClassID.
Parameters:
EntityClassID - ID of the EntityClass to be retrieved.
Returns:
the registered EntityClass corresponding to the given EntityClassID.
null is returned when the current status is LifeCycle.STATUS_INIT,
or when the given EntityClassID is not registered.

getEntityClass
EntityClass getEntityClass(String EntityClassName)

Returns the registered EntityClass corresponding to the given EntityClass Name.
Parameters:
EntityClassName — The name of the EntityClass to be retrieved.
Returns:
the registered EntityClass corresponding to the given EntityClass Name.
null is returned when the current status is LifeCycle.STATUS_INIT,
or when the given EntityClassID is not registered.

start
int start()

End the configuration phase and start to use the library.

92 it.list.jftinterface JFT

it.list.jftinterface JFT @ I_I ST

This method must be called only when current status is STATUS_CONFIGURING after all the
register(it.list.jft. EntityClass) invocations.

If this method invocation completed successfully, the current status changed to STATUS _RUNNING.
otherwise it remains unchanged.

Returns:
« LifeCycle.RESULT_OK if the operation completed successfully,
« LifeCycle.RESULT_INVALID_STATUS if the current status is not
STATUS_CONFIGURING.
makeEmptyMask

Mask makeEmptyMask(int entityClassID)
Create and returns a new empty mask for a given Entity Class.

A mask may be used in subscriptions (SubscriptionParam.setMask()) or transactions
(TransactionParam.setMask()).

This method must be called only when current status is STATUS_RUNNING, i.e. after the start()
invocation.
Parameters:
entityClassID — Entity Class ID of the market class.
Returns:
the new empty mask.
null is returned when the current status is not STATUS _RUNNING,
or when the parameter entityClassID is wrong.

makeContext

Context makeContext()
Create and returns a new context.
A context is used to interact with one or more FastTrack servers.

This method must be called only when current status is STATUS_RUNNING, i.e. after the start()
invocation.
Returns:

the new context.

null is returned when the current status is not STATUS _RUNNING.

makeTimeStamp

TimeStamp makeTimeStamp(int dateTime,
int prog)

Create and returns a new TimeStamp.

it.list.jftinterface JFT 93

@ LI ST it.list.jftinterface JFT

This convenience method may be used to re—create a timestamp previously saved as 2 ints returned by
invocation of TimeStamp.getDateTime() and TimeStamp.getProg().

This method must be called only when current status is STATUS_RUNNING, i.e. after the start()
invocation.
Parameters:
dateTime - saved value returned by a TimeStamp.getDateTime() invocation.
prog — saved value returned by a TimeStamp.getProg() invocation.
Returns:
the new TimeStamp.
null is returned when the current status is not STATUS_RUNNING,
or when some parameter is < 0.

makeTransactionID

TransactionI|D makeTransactionlD(int clientID,
int clientServicelD,
int businessServicelD,
TimeStamp timeStamp)

Create and returns a new TransactionID.

This convenience method may be used to re—create a TransactionlID previously saved as 5 ints returned by
invocations of TransactionID.getClientID(), TransactionID.getClientServicelD(),
TransactionID.getBusinessServicelD() and TransactionlD.getTimeStamp().

This method must be called only when current status is STATUS_RUNNING, i.e. after the start()
invocation.
Parameters:
clientID - saved value returned by a TransactionID.getClientID() invocation.
clientServicelD — saved value returned by a TransactionID.getClientServicelD()
invocation.
businessServicelD - saved value returned by a
TransactionID.getBusinessServicelD() invocation.
timeStamp — saved value returned by a TransactionID.getTimeStamp() invocation.
Returns:
the new TransactionID.
null is returned when the current status is not STATUS RUNNING,
or when the timeStamp parameter is null.
See Also:
makeTimeStamp(int, int)

Submit a bug or feature to FT\API Programming Support

it.list.jft
Interface Mask

public interface Mask

94 it.list.jftinterface JFT

mailto:ftapi@list-group.com

it.list.jftinterface Mask @ I_I ST

A set of fields of a EntityClass.

A mask may be used in subscriptions (SubscriptionParam.setMask()) or transactions
(TransactionParam.setMask()).

Empty masks are created by JFT.makeEmptyMask() and then filled with addFieldByName().

Method Summary

void |addFieldByName(String fieldName)
Add a specific field to the mask.

int | getEntityClassID()
Returns the ID of the EntityClass related to this mask.

byte[| [getMask()

boolean |isBound()
Returns the bound-indication of this mask.

void |reset()
Reset this mask to an emtpy mask.

void [setMask(byte[] mask)

Method Detail

reset

void reset()
throws lllegalStateException

Reset this mask to an emtpy mask.
Throws:
IllegalStateException - if this mask is bound.

addFieldByName

void addFieldByName(String fieldName)
throws lllegalArgumentException,
lllegalStateException

Add a specific field to the mask.

A masked field of this EntityClass related to this mask may be:

it.list.jftinterface Mask 95

\

I_I ST it.list.jftinterface Mask

¢ 1. a String field of this EntityClass.

¢ 2. a primitive (i.e. boolean or numeric types) field of this EntityClass.

¢ 3. a component of an array, of primitive types (but here byte, boolean and char are not allowed!), fiel
of this EntityClass.
In this case the component is identified by an unsigned integer between square barckets [].

0 4. a masked field (recursive definition!) of a EntityClass reference field of this EntityClass.
In this case the masked field is identified by the dot notation “field.field".

0 5. a masked field (recursive definition!) of an array, of EntityClass references, field of this
EntityClass.
In this case the component is identified by an unsigned integer between square barckets [].

Spaces (blank, tab, carriage return, etc...) are not allowed inside a masked field representation.

As an example please consider the following two EntityClasses:

class TypeA implements EntityClass {
int n;
int v[10];
String s;
}
class TypeB implements EntityClass {
TypeA a[10];
TypeA Xx;
double d[10];
char c[10];
byte b;
String ss;

}

Here a list of valid masked fields of TypeB:

¢ Rule 1: "ss"
¢ Rule 2: "b"
¢ Rule 3: "d[2]"
O Rule 4: "x.n", "x.v[3]", "X.s"
¢ Rule 5: "a[8].n", "a[0].v[9]", "a[5].s"
Here a list of invalid masked fields of TypeB:
O Rule 1: "s s", "t"
O Rule 2: "x"
O Rule 3: "c[2]", "d[+2]", "d[20]", "d[2", "d[2]", "sS[3]"
O Rule 4: "a.n", "x.y"
¢ Rule 5: "a[8]. n", "a[8]", "a[0].v", "a[5].s[3]"

Parameters:
fieldName - field of the related EntityClass,

Throws:
lllegalArgumentException — if fieldName is null or it does not exists in the related
EntityClass.

lllegalStateException - if this mask is bound.

96

it.list.jftinterface Mask

it.list.jftinterface Mask Q I_I ST

getEntityClassID
int getEntityClassID()
Returns the ID of the EntityClass related to this mask.

The returned value is the same entityClassID used as parameter of JFT.makeEmptyMask(int)
invocation that created this mask.
Returns:

the ID of the EntityClass related to this mask.

isBound
boolean isBound()
Returns the bound—-indication of this mask.

A mask is bound if it was used as creation parameter in a SubscriptionParam.setMask() or in a
TransactionParam.setMask().

reset() and addFieldByName() methods invocation on bound masks will throw a
lllegalStateException.
Returns:

the bound-indication of this mask.

setMask

void setMask(byte[] mask)
throws lllegalArgumentException,
lllegalStateException

Throws:
lllegalArgumentException
lllegalStateException

getMask

byte[] getMask()

Submit a bug or feature to FT\API Programming Support

it.list.jft
Interface Param

All Known Subinterfaces:
ConnectionParam, EntityClassQueryParam, FilterParam, MulticastConnectionParam, QueryParam,
SubscriptionParam, TransactionParam

it.list.jftinterface Mask 97

mailto:ftapi@list-group.com

@ I.I ST it.list.jftinterface Param

public interface Param

Super-interface common to all parameter container of CommunicationLifeCycle objects.
Bound

The 5 classes (ConnectionParam, FilterParam, QueryParam, SubscriptionParam and
TransactionParam) that implement this Param interfaces share the concept of being bound.

Every time a parameter container (i.e. an object of the previous 5 classes) is created it is not bound.

When such parameter container is not bound then a specific parameter may be set via a setSomething method
(e.g. a setEntityClassID() may be issued on a SubscriptionParam).

Once a parameter container is given as creation parameter of a makeSomething method of Context (e.g.
Context.makeSubscription()) it becomes bound:

« it can be shared with others CommunicationLifeCycle object,
i.e. it can be re—used in another makeSomething method of Context;
* but it cannot never change:
all setSomething method will throw a lllegalStateException in this case.

Acceptable Values
Each single parameter (of each class that implements this Param interface) has the concept of being acceptable.
E.g. the EntityClassID of a SubscriptionParam is acceptable only if it has been registered.

In this documentation each description of each single parameter has a section, titled "Acceptable values:", that
describes the acceptable values for the corresponding parameter using a Java boolean expression that must be
satisfied, i.e. its computed value at run—time must be true.

E.g. a value for the EntityClassID of a SubscriptionParam is acceptable only if:
JFT.THIS.isRegistered(getEntityClassID())
/l'i.e. acceptable only if registered

These run-time checks (to see if a parameter has an acceptable value) are not executed when the parameter is se
various setSomething methods of sub-interface of Param), but instead when it's given to a specific
CommunicationLifeCycle object creation (the various makeSomething methods of Context).

E.g. the check to see if the value of the EntityClassID of a SubscriptionParam is acceptable is not
made inside:
mySubscrParam.setEntityClassID(myEntityClassID);
/I no check here
instead it's made inside:
myContext.makeSubscription(myConnection, mySubscrParam,
mySubscrListener);
/I here all mySubscrParam parameters are checked !

98 it.list.jftinterface Param

Please note that when a check is made it regards all the parameters used by the specific operation and not only the

it.list.jftinterface Param Q I_I ST

parameters explicitly set by the programmer.

E.g. inside a Subscription creation all the following parameters are checked to see if they have

acceptable values:

EntityClassID, EntityClassVersion, EntityClassTimeStamp, QueryType, EntityKey, Filter, Flow and

Mask.

If some has an unacceptable value (i.e. if some corresponding boolean expression valuated false)

then the operation fails and a lllegalArgumentException is thrown.

Method Summary

boolean

isBound()
Returns the bound-indication of this parameter container.

Method Detail

isBound

boolean isBound()

Returns the bound-indication of this parameter container.

A parameter container is bound if it was used as creation parameter in some CommunicationLifeCycle

object.

setSomething method invocation on bound objects will throw a lllegalStateException.

Returns:

the bound-indication of this parameter container.

Submit a bug or feature to FT\API Programming Support

it.list jft

Interface ConnectionParam

All Superinterfaces:
Param

public interface ConnectionParam
extends Param

Connection parameter container.

it.list.jftinterface Param

99

http://java.sun.com/j2se/1.4.1/docs/api/java/lang/IllegalArgumentException.html
mailto:ftapi@list-group.com

& I_I ST it.list.jftinterface Param

This container of connection parameters is created by Context.makeConnectionParam() and it is used by
Context.makeConnection().

See Also:

Connection Usage, Acceptable Values

gries).

Field Summary
static int CONN_TYPE_HTTP_TUNNEL

Connection—transport type—code: to use an HTTP tunnel, over TCP/IP, as transport.
static int CONN_TYPE_SOCKS4A

Connection—-transport type—code: to use an Socks4A proxy.
static int CONN_TYPE_SOCKS5

Connection—transport type—code: to use an Socks5 proxy.
static int CONN_TYPE_TCP

Connection—-transport type—code: to use TCP/IP as transport.
static int USER_TYPE_AUTOTRADER

User-type code: to create a connection on which send data variations (transaction).
static int USER_TYPE_CONTROLLER

User-type code: to create a specialized (no more here described) connection.
static int USER_TYPE_MASTERSLAVE

User-type code: to create a specialized (no more here described) connection.
static int USER_TYPE_MONITOR

User-type code: to create a connection on which request data (subscriptions and/or qu
static int USER_TYPE_TRADER

User-type code: to create a connection on which send data variations (transaction).
static int USER_TYPE_VIEW

User-type code: to create a connection on which request data (subscriptions and queri

DS).

Method Summary

String | getAlternativeHost()

Returns the optional alternative requested server—host of a new connection.

int [getAlternativePort()

Returns the optional alternative requested server—port of a new connectign.

int[] getApplRevision()
Returns the client version for the new connection.

int | getApplSignature()
Returns the client signature for the new connection.

File |getAuthFile()

Returns the File that contains an authorization key for the new connection).

100

String

it.list.jftinterface Param

it.list.jftinterface Param @ I_I ST
getAuthKey()

Returns the authorization key for the new connection.

String

getCharSet()
Returns the String that represents the charset used to code/decode the s}
the new connection.

rings o

int

getClientID()
Returns the ClientID for the new connection.

boolean

getCompression()
Returns the requested indication about a compressed transmission for a |
connection.

new

int]]

getConnType()
Returns the array of connection—transport code of a new connection.

String

getHost()
Returns the requested server—host of a new connection.

String

getPassword()
Returns the requested user—password of a new connection.

int

getPort()
Returns the requested server—port of a new connection.

String

getProxyHost()
Returns the optional requested proxy—host of a new connection.

int

getProxyPort()
Returns the optional requested proxy—port of a new connection.

String

getProxyUserName()
Returns the optional requested proxy—username of a new connection.

String

getService()
Returns the optional market/service name to which the new connection m
talk.

ust

boolean

getTcpNoDelay()
Tests if TCP_NODELAY is enabled.

String

getUserName()
Returns the requested user—name of a new connection.

int

getUserType()
Returns the user—type code of a new connection.

void

setAlternativeHost(String alternativeHost)
Set/replace the optional alternative requested server—host of a new conng

pction.

void

setAlternativePort(int alternativePort)
Set/replace the optional alternative requested server—port of a new conne

ction.

void

setApplRevision(int[] applRevision)
Set/replace the client version for the new connection.

void

setApplSignature(int applSignature)
Set/replace the client signature for the new connection.

void

setAuthFile(File file)
Set/replace the File that contains an authorization key for the new conneqg

tion.

it.list.jftinterface Param

101

http://java.sun.com/j2se/1.4.1/docs/api/java/nio/charset/Charset.html

S LIST

it.list.jftinterface Param

e string

[a new

ction.

N must

void | setAuthKey(String key)
Set/replace the authorization key for the new connection.
void | setCharSet(String charSet)
Set/replace the String that represents the charset used to code/decode th
on the new connection.
void | setClientID(int clientID)
Set/replace the ClientID for the new connection.
void | setCompression(boolean enable)
Set/replace the requested indication about a compressed transmission fo
connection.
void |setConnType(int connType)
Set/replace the connection—-transport code of a new connection.
void |setConnType(int[] connType)
Set/replace the array of connection—transport code to try for a new conne
void | setHost(String host)
Set/replace the requested server—host of a new connection.
void | setPassword(String password)
Set/replace the requested user—password of a new connection.
void [setPort(int port)
Set/replace the requested server—port of a new connection.
void |setProxyHost(String proxyHost)
Set/replace the optional requested proxy—host of a new connection.
void | setProxyPassword(String proxyPassword)
Set/replace the optional requested proxy—password of a new connection.
void [setProxyPort(int proxyPort)
Set/replace the optional requested proxy—port of a new connection.
void | setProxyUserName(String proxyUserName)
Set/replace the optional requested proxy—username of a new connection,
void |setService(String service)
Set/replace the optional market/service name to which the new connectio
talk.
void | setTcpNoDelay(boolean noDelay)
Set the TCP_NODELAY setting.
void |setUserName(String userName)
Set/replace the requested user—name of a new connection.
void |setUserType(int userType)
Set/replace the user—type code of a new connection.
Methods inherited from interface Param
isBound
102 it.list.jftinterface Param

http://java.sun.com/j2se/1.4.1/docs/api/java/nio/charset/Charset.html

it.list.jftinterface ConnectionParam Q LI ST

Field Detall

USER_TYPE TRADER

static final int USER_TYPE_TRADER
User—type code: to create a connection on which send data variations (transaction).
This value may be set with setUserType(int) and retrieved by getUserType().
This and USER_TYPE_VIEW values are the most commonly used values.

See Also:
Constant Field Values

USER_TYPE_AUTOTRADER
static final int USER_TYPE_AUTOTRADER

User—type code: to create a connection on which send data variations (transaction).

This value may be set with setUserType(int) and retrieved by getUserType().

USER_TYPE_TRADER and USER_TYPE_VIEW values are the most commonly used values.

See Also:
Constant Field Values

USER_TYPE_MONITOR
static final int USER_TYPE_MONITOR

User-type code: to create a connection on which request data (subscriptions and/or queries).

This value may be set with setUserType(int) and retrieved by getUserType().

USER_TYPE_TRADER and USER_TYPE_VIEW values are the most commonly used values.

See Also:
Constant Field Values

USER_TYPE_VIEW
static final int USER_TYPE_VIEW

User-type code: to create a connection on which request data (subscriptions and queries).

it.list.jftinterface ConnectionParam

103

@ I.I ST it.list.jftinterface ConnectionParam

This value may be set with setUserType(int) and retrieved by getUserType().

This and USER_TYPE_TRADER values are the most commonly used values.

See Also:
Constant Field Values

USER_TYPE _CONTROLLER

static final int USER_TYPE_CONTROLLER
User-type code: to create a specialized (no more here described) connection.
This value may be set with setUserType(int) and retrieved by getUserType().

USER_TYPE_TRADER and USER_TYPE_VIEW values are the most commonly used values.

See Also:
Constant Field Values

USER_TYPE MASTERSLAVE

static final int USER_TYPE_MASTERSLAVE
User-type code: to create a specialized (no more here described) connection.
This value may be set with setUserType(int) and retrieved by getUserType().

USER_TYPE_TRADER and USER_TYPE_VIEW values are the most commonly used values.

See Also:
Constant Field Values

CONN_TYPE_TCP
static final int CONN_TYPE_TCP
Connection—-transport type—code: to use TCP/IP as transport.

This value may be set with setConnType(int) and retrieved by getConnType().

See Also:
Constant Field Values

CONN_TYPE_HTTP_TUNNEL

static final int CONN_TYPE_HTTP_TUNNEL

104 it.list.jftinterface ConnectionParam

it.list.jftinterface ConnectionParam @ LI ST

Connection—transport type—code: to use an HTTP tunnel, over TCP/IP, as transport.
This value may be set with setConnType(int) and retrieved by getConnType().

See Also:
Constant Field Values

CONN_TYPE_SOCKS4A
static final int CONN_TYPE_SOCKS4A
Connection—transport type—code: to use an Socks4A proxy.
This value may be set with setConnType(int) and retrieved by getConnType().

See Also:
Constant Field Values

CONN_TYPE_SOCKSS5
static final int CONN_TYPE_SOCKS5
Connection—transport type—code: to use an Socks5 proxy.
This value may be set with setConnType(int) and retrieved by getConnType().

See Also:
Constant Field Values

Method Detail

getHost
String getHost()

Returns the requested server—host of a new connection.

The pair given by this value together with getPort() describe the server to which the client must talk.

Used by:
Connection.open()
Default value:
null
Acceptable values:
getHost() != null &getHost().length > 0
Returns:
the requested server—host of a new connection.
See Also:

it.list.jftinterface ConnectionParam

105

@ I.I ST it.list.jftinterface ConnectionParam

who sets this value, if you want to use YAS service to find the less
loaded service

getPort
int getPort()
Returns the requested server—port of a new connection.
The pair given by getHost() together with this value describe the server to which the client must talk.

Used by:
Connection.open()
Default value:
0
Acceptable values:
getPort() >0
Returns:
the requested server—port of a new connection.
See Also:
who sets this value

getAlternativeHost
String getAlternativeHost()
Returns the optional alternative requested server—host of a new connection.

The optional pair given by this value together with getAlternativePort() describe another server to
which the client must talk in the case the first attempt to the principal server (pair getHost() together with
getPort()) failed.

Used by:

Connection.open()
Default value:

null
Acceptable values:

getAlternativeHost() == null

|| getAlternativeHost().length > 0 &getAlternativePort() > 0
Returns:

the optional alternative requested server—host of a new connection.
See Also:

who sets this value

getAlternativePort
int getAlternativePort()

Returns the optional alternative requested server—port of a new connection.

106 it.list.jftinterface ConnectionParam

it.list.jftinterface ConnectionParam @ LI ST

The optional pair given by getAlternativeHost() together with this value describe another server to
which the client must talk in the case the first attempt to the principal server (pair getHost() together with
getPort()) failed.

Used by:
Connection.open()
Default value:
0
Acceptable values:
getAlternativePort ==
|| getAlternativePort() > 0 &getAlternativeHost() != null
&getAlternativeHost().length > 0
Returns:
the optional alternative requested server—port of a new connection.
See Also:
who sets this value

getConnType
int[] getConnType()
Returns the array of connection—transport code of a new connection.

The connection—transport code of a connection describe the transport used on that connection. Possible val
are:

O CONN_TYPE_TCP to use the classic TCP/IP transport,
O CONN_TYPE_HTTP_TUNNEL to use a tunnel over HTTP transport, e.g. used in applet inside HTMI
pages, or else used to bypass firewall,
O CONN_TYPE_SOCKS4A to use a socks version 4a proxy,
O CONN_TYPE_SOCKSS to use a socks version 5 proxy,
In the two latter cases a pair getProxyHost() together with getProxyPort() must be defined.

Used by:

Connection.open()
Default value:

CONN_TYPE_TCP
Acceptable values:

getConnType() == CONN_TYPE_TCP

|| getConnType() == CONN_TYPE_HTTP_TUNNEL

|| getConnType() == CONN_TYPE_SOCKS4A

|| getConnType() == CONN_TYPE_SOCKS5
Returns:

the array of connection—transport code of a new connection.
See Also:

who sets this value

it.list.jftinterface ConnectionParam 107

@ I.I ST it.list.jftinterface ConnectionParam

getProxyHost
String getProxyHost()
Returns the optional requested proxy—host of a new connection.

The optional pair given by this value together with getProxyPort() describe the proxy used when a
non—-CONN_TYPE_TCP connection—transport is used.

Used by:
Connection.open()
Default value:
null
Acceptable values:
getProxyHost() == null
|| getConnType() = CONN_TYPE_TCP &getProxyHost().length > 0
&getProxyPort() > 0
Returns:
the optional requested proxy—host of a new connection.
See Also:
who sets this value

getProxyPort
int getProxyPort()
Returns the optional requested proxy—port of a new connection.

The optional pair given by getProxyHost() together with this value describe the proxy used when a
non—-CONN_TYPE_TCP connection—transport is used.

Used by:
Connection.open()
Default value:
0
Acceptable values:
getProxyPort ==
|| getConnType() '= CONN_TYPE_TCP &getProxyPort() > 0
&getProxyHost() !'= null &getProxyHost().length > 0
Returns:
the requested optional proxy—port of a new connection.
See Also:
who sets this value

getProxyUserName
String getProxyUserName()

Returns the optional requested proxy—username of a new connection.

108 it.list.jftinterface ConnectionParam

it.list.jftinterface ConnectionParam @ LI ST

Used by:
Connection.open()
Default value:
0
Acceptable values:
getProxyPort ==
|| getConnType() '= CONN_TYPE_TCP &getProxyPort() > 0
&getProxyHost() !'= null &getProxyHost().length > 0
Returns:
the requested optional proxy—username of a new connection.
See Also:
who sets this value, who sets proxy—password

getCompression
boolean getCompression()
Returns the requested indication about a compressed transmission for a new connection.

A true values indicates that the transmission between the client and the server for this connection must be
compressed to save bandwidth.

Used by:
Connection.open()
Default value:
false
Acceptable values:
true // any value
Returns:
the requested indication about a compressed transmission for a new connection.
See Also:
who sets this value

getCharSet
String getCharSet()
Returns the String that represents the charset used to code/decode the strings on the new connection.

Every time a String goes from the client to server it's coded as a bytes—sequence using the given charset.
The behavior of this transformation when the string cannot be encoded in the given charset is unspecified.

Every time a bytes—sequence goes from the server to the client it's decoded into a String using the given
charset. The behavior of this transformation when the given bytes are not valid in the given charset is
unspecified.

Please note that the default—value is determined at run—time as "ISO-8859-15" or else "ISO-8859—-1"
depending on the Java platform on which the clients run:

0 "ISO-8859-15" (ISO-LATIN-9) is the first-choice (because it contains the EURO-sign),

it.list.jftinterface ConnectionParam 109

http://java.sun.com/j2se/1.4.1/docs/api/java/nio/charset/Charset.html

@ I.I ST it.list.jftinterface ConnectionParam

0 "ISO-8859-1" (ISO-LATIN-1) is the second choice (it does not contain the EURO-sign, but it
contains the "broken-bar", cedilla, acute—accent, "1/4", "1/2" and "3/4" characters).
Please see ISO Latin 9 as compared with ISO Latin 1 to check all differences between the two charsets.

Used by:
Connection.open()
Default value:
"ISO-8859-15" ISO-LATIN-9, if supported by the Java platform on which the client runs,
"ISO-8859-1" ISO-LATIN-1, otherwise.
Acceptable values:
getCharSet() != null &getCharSet().length > 0
&new String("Hello World").getBytes(getCharSet()) != null // i.e. no
exception thrown
Returns:
the String that represents the Charset used to code/decode the strings on the new connection.
See Also:
who sets this value

getService
String getService()

Returns the optional market/service name to which the new connection must talk.

Used by:
Connection.open()
Default value:
null
Acceptable values:
getService() == null || getService.length > 0
Returns:
the optional market/service name to which the new connection must talk.
See Also:
who sets this value

getUserType
int getUserType()
Returns the user—type code of a new connection.

The user—type code of a connection describe the activities that can be made on that connection. Possible
values are:

O USER_TYPE_TRADER to send transactions on the connection,

O USER_TYPE_AUTOTRADER to send transactions on the connection,

O USER_TYPE_MONITOR to request data (subscription and/or queries) on the connection,

O USER_TYPE_VIEW to request data (subscription and/or queries) on the connection,

O USER_TYPE_CONTROLLER to use in a specially way (not described here) the connection,
O USER_TYPE_MASTERSLAVE to use in a specially way (not described here) the connection.

110 it.list.jftinterface ConnectionParam

http://www.cs.tut.fi/~jkorpela/latin9.html
http://java.sun.com/j2se/1.4.1/docs/api/java/lang/String.html#getBytes(java.lang.String)

it.list.jftinterface ConnectionParam @ LI ST

The server may subsequently returns a ConnectionOpenEvent. RESULT_INVALID _USERTYPE
failure—code if it does not comply with this value.

Used by:
Connection.open()
Default value:
USER_TYPE_VIEW
Acceptable values:
getUserType() == USER_TYPE_TRADER
|| getUserType() == USER_TYPE_AUTOTRADER
|| getUserType() == USER_TYPE_MONITOR
|| getUserType() == USER_TYPE_VIEW
|| getUserType() == USER_TYPE_CONTROLLER
|| getUserType() == USER_TYPE_MASTERSLAVE
Returns:
the user—type code of a new connection.
See Also:
who sets this value

getUserName
String getUserName()
Returns the requested user—name of a new connection.

The pair given by this value together with getPassword() describe the user associated to the new
connection.

The server may subsequently returns a ConnectionOpenEvent. RESULT _INVALID_USERNAME
failure—code if it does not comply with this value.

Used by:

Connection.open()
Default value:

null
Acceptable values:

getUserName() != null &getUserName().length > 0
Returns:

the requested user—name of a new connection.
See Also:

who sets this value

getPassword
String getPassword()
Returns the requested user—password of a new connection.

The pair given by getUserName() together with this value describe the user associated to the new
connection.

it.list.jftinterface ConnectionParam 111

@ I.I ST it.list.jftinterface ConnectionParam

The server may subsequently returns a ConnectionOpenEvent. RESULT _INVALID _PASSWORD
failure—code if it does not comply with this value.

Used by:

Connection.open()
Default value:

null
Acceptable values:

getPassword() != null &getPassword().length > 0
Returns:

the requested user—password of a new connection.
See Also:

who sets this value

getClientID
int getClientID()
Returns the ClientID for the new connection.
The ClientID is a positive number that uniquely identifies the client.
This number is automatically used on TransactionIDs of all Transactions sent on this connection.

The server may subsequently returns a ConnectionOpenEvent. RESULT_INVALID_CLIENTID
failure—code if it does not comply with this value.

Used by:
Connection.open()
Default value:
0
Acceptable values:
getClientID() > 0
Returns:
the ClientID for the new connection.
See Also:
who sets this value

getApplRevision
int[] getApplRevision()
Returns the client version for the new connection.

A version is always represented by a three—dimensional array; e.g. the version 2.0.3 is represented by:
int[] version = {2, 0, 3};

The server may subsequently returns a ConnectionOpenEvent. RESULT _INVALID_REVISION
failure—code if it does not comply with this value.

112 it.list.jftinterface ConnectionParam

it.list.jftinterface ConnectionParam @ LI ST

Used by:
Connection.open()
Default value:
{0,0,0}
Acceptable values:
getApplRevision() != null &getApplRevision().length ==
&getApplRevision()[0] >= 0 &getApplRevision()[0] <= 255
&getApplRevision()[1] >= 0 &getApplRevision()[1] <= 255
&getApplRevision()[2] >= 0 &getApplRevision()[2] <= 255
Returns:
the client version for the new connection.
See Also:
who sets this value

getApplSignature
int getApplSignature()
Returns the client signature for the new connection.

A signature is a non—negative number, that may be be required by the service (on the server) that manages
market.

Used by:
Connection.open()
Default value:
0
Acceptable values:
getApplSignature() >=0
Returns:
the client signature for the new connection.
See Also:
who sets this value

getAuthKey
String getAuthKey()
Returns the authorization key for the new connection.

An authorization key (normally given by List S.p.a. in an authorization file is a key that allow the client to
open and use successfully a connection with a given server.

The server may subsequently returns a ConnectionOpenEvent. RESULT _INVALID_AUTH_KEY
failure—code if it does not comply with this value.

Used by:
Connection.open()
Default value:
null

it.list.jftinterface ConnectionParam 113

@ I.I ST it.list.jftinterface ConnectionParam

Acceptable values:

getAuthKey == null

|| getAuthFile() == null &getAuthKey().length > 0
Returns:

the authorization key for the new connection.
See Also:

who sets this value

getAuthFile
File getAuthFile()
Returns the File that contains an authorization key for the new connection.

An authorization file, given by List S.p.a., contains a key that allow the client to open and use successfully a
connection with a given server.

The server may subsequently returns a ConnectionOpenEvent. RESULT _INVALID_AUTH_KEY
failure—code if it does not comply with the authorization key.

Used by:

Connection.open()
Default value:

null
Acceptable values:

getAuthFile() == null

|| getAuthKey() == null &getAuthFile().canRead()
Returns:

the File that contains an authorization key for the new connection.
See Also:

who sets this value

getTcpNoDelay
boolean getTcpNoDelay()
Tests if TCP_NODELAY is enabled.
A true values indicates that Nagle's algorithm is disabled.

Used by:
Connection.open()
Default value:
true
Acceptable values:
true // any value
Returns:
a boolean indicating whether or not TCP_NODELAY is enabled.
See Also:
who sets this value

114 it.list.jftinterface ConnectionParam

http://java.sun.com/j2se/1.4.1/docs/api/java/io/File.html#canRead()

it.list.jftinterface ConnectionParam Q LI ST

setHost

void setHost(String host)
throws lllegalStateException

Set/replace the requested server—host of a new connection.
Parameters:

host - the requested server—host of a new connection.
Throws:

lllegalStateException — if this container is already bound.
See Also:

default/current/acceptable values and their meaning

setPort

void setPort(int port)
throws lllegalStateException

Set/replace the requested server—port of a new connection.
Parameters:

port — the requested server—port of a new connection.
Throws:

lllegalStateException — if this container is already bound.
See Also:

default/current/acceptable values and their meaning

setAlternativeHost

void setAlternativeHost(String alternativeHost)
throws lllegalStateException

Set/replace the optional alternative requested server—host of a new connection.
Parameters:
alternativeHost — the optional alternative requested server—host of a new connection.
Throws:
lllegalStateException — if this container is already bound.
See Also:
default/current/acceptable values and their meaning

setAlternativePort

void setAlternativePort(int alternativePort)
throws lllegalStateException

Set/replace the optional alternative requested server—port of a new connection.

Parameters:
alternativePort — the optional alternative requested server—port of a new connection.

it.list.jftinterface ConnectionParam 115

& I.I ST it.list.jftinterface ConnectionParam

Throws:

lllegalStateException — if this container is already bound.
See Also:

default/current/acceptable values and their meaning

setConnType

void setConnType(int connType)
throws lllegalStateException

Set/replace the connection-transport code of a new connection.
Parameters:

connType - the connection-transport code of a new connection.
Throws:

lllegalStateException - if this container is already bound.
See Also:

default/current/acceptable values and their meaning

setConnType

void setConnType(int[] connType)
throws lllegalStateException

Set/replace the array of connection—transport code to try for a new connection.
Parameters:

connType - array of the connection—transport code of a new connection.
Throws:

lllegalStateException - if this container is already bound.
See Also:

default/current/acceptable values and their meaning

setProxyHost

void setProxyHost(String proxyHost)
throws lllegalStateException

Set/replace the optional requested proxy—host of a new connection.
Parameters:

proxyHost - the optional requested proxy—host of a new connection.
Throws:

lllegalStateException - if this container is already bound.
See Also:

default/current/acceptable values and their meaning

setProxyPort

void setProxyPort(int proxyPort)
throws lllegalStateException

116 it.list.jftinterface ConnectionParam

it.list.jftinterface ConnectionParam Q LI ST

Set/replace the optional requested proxy—port of a new connection.
Parameters:

proxyPort — the optional requested proxy—port of a new connection.
Throws:

lllegalStateException - if this container is already bound.
See Also:

default/current/acceptable values and their meaning

setProxyUserName
void setProxyUserName(String proxyUserName)

Set/replace the optional requested proxy—username of a new connection.
Parameters:
proxyUserName — the optional requested proxy—-username of a new connection.
Throws:
lllegalStateException - if this container is already bound.
See Also:
default/current/acceptable values and their meaning

setProxyPassword
void setProxyPassword(String proxyPassword)

Set/replace the optional requested proxy—password of a new connection.
Parameters:

proxyPassword — the optional requested proxy—password of a new connection.
Throws:

lllegalStateException - if this container is already bound.

setCompression

void setCompression(boolean enable)
throws lllegalStateException

Set/replace the requested indication about a compressed transmission for a new connection.
Parameters:

enable - the requested indication about a compressed transmission for a new connection.
Throws:

lllegalStateException — if this container is already bound.
See Also:

default/current/acceptable values and their meaning

setCharSet

void setCharSet(String charSet)
throws lllegalStateException

it.list.jftinterface ConnectionParam 117

& I.I ST it.list.jftinterface ConnectionParam

Set/replace the String that represents the charset used to code/decode the strings on the new connection.

Parameters:
charSet - the String that represents the charset used to code/decode the strings on the new
connection.

Throws:

lllegalStateException — if this container is already bound.
See Also:
default/current/acceptable values and their meaning

setService

void setService(String service)
throws lllegalStateException

Set/replace the optional market/service name to which the new connection must talk.

If you set the service, you ask to YAS service (identified by host and port parameters) to establish a
connection with the less—loaded service.

You can specifies the double services connection required by ASIA platform using "|" (pipe) character as the
separator of the public and private service name, for example:
"PUBLMETAMARKET|PRIVMETAMARKET"

Parameters:

service — the optional market/service name to which the new connection must talk.
Throws:

lllegalStateException — if this container is already bound.
See Also:

default/current/acceptable values and their meaning

setUserType

void setUserType(int userType)
throws lllegalStateException

Set/replace the user—type code of a new connection.

Parameters:

userType — the user-type code of a new connection.
Throws:

lllegalStateException — if this container is already bound.
See Also:

default/current/acceptable values and their meaning

setUserName

void setUserName(String userName)
throws lllegalStateException

Set/replace the requested user—name of a new connection.
Parameters:

118 it.list.jftinterface ConnectionParam

http://java.sun.com/j2se/1.4.1/docs/api/java/nio/charset/Charset.html
http://java.sun.com/j2se/1.4.1/docs/api/java/nio/charset/Charset.html

it.list.jftinterface ConnectionParam Q LI ST

userName - the requested user—-name of a new connection.
Throws:

lllegalStateException — if this container is already bound.
See Also:

default/current/acceptable values and their meaning

setPassword

void setPassword(String password)
throws lllegalStateException

Set/replace the requested user—password of a new connection.
Parameters:

password - the requested user—password of a new connection.
Throws:

lllegalStateException - if this container is already bound.
See Also:

default/current/acceptable values and their meaning

setClientlD

void setClientID(int clientID)
throws lllegalStateException

Set/replace the ClientID for the new connection.
Parameters:
clientID - the ClientID for the new connection.
Throws:
lllegalStateException — if this container is already bound.
See Also:
default/current/acceptable values and their meaning

setApplRevision

void setApplRevision(int[] applRevision)
throws lllegalStateException

Set/replace the client version for the new connection.
Parameters:

applRevision - the client version for the new connection.
Throws:

lllegalStateException — if this container is already bound.
See Also:

default/current/acceptable values and their meaning

it.list.jftinterface ConnectionParam 119

@ I.I ST it.list.jftinterface ConnectionParam

setApplSignature

void setApplSignature(int applSignature)

throws lllegalStateException

Set/replace the client signature for the new connection.
Parameters:

applSignature — the client signature for the new connection.
Throws:

lllegalStateException - if this container is already bound.
See Also:

default/current/acceptable values and their meaning

setAuthKey

void setAuthKey(String key)

throws lllegalStateException

Set/replace the authorization key for the new connection.
Parameters:

key — the authorization key for the new connection.
Throws:

lllegalStateException — if this container is already bound.
See Also:

default/current/acceptable values and their meaning

setAuthFile

void setAuthFile(File file)

throws lllegalStateException

Set/replace the File that contains an authorization key for the new connection.
Parameters:

file — the File that contains an authorization key for the new connection.
Throws:

lllegalStateException — if this container is already bound.
See Also:

default/current/acceptable values and their meaning

setTcpNoDelay

void setTcpNoDelay(boolean noDelay)

120

throws lllegalStateException

Set the TCP_NODELAY setting. Setting this to true will disable Nagle's algorithm for TCP. The default is
true.
Parameters:
noDelay — false to disable TCP_NODELAY (enable Nagle's algorithm), true to enable.
Throws:

it.list.jftinterface ConnectionParam

it.list.jft Interface EntityClassQueryParam

lllegalStateException — if this container is already bound.

See Also:

default/current/acceptable values and their meaning

& LisT

Submit a bug or feature to FT\API Programming Support

it list. jft

Interface EntityClassQueryParam

All Superinterfaces:
Param

public interface EntityClassQueryParam

extends Param

Method Summary

int

getEntityClassID()

String | getEntityClassName()
void | setEntityClassID(int entityClassID)
void |setEntityClassName(String entityClassName)

Methods inherited from interface Param

isBound

Method Detail

getEntityClassID

int getEntityClassID()

it.list.jft Interface EntityClassQueryParam

121

mailto:ftapi@list-group.com

& I.I ST it.list.jftinterface EntityClassQueryParam

getEntityClassName

String getEntityClassName()

setEntityClassID

void setEntityClassID(int entityClassID)
throws lllegalStateException

Throws:
lllegalStateException

setEntityClassName

void setEntityClassName(String entityClassName)
throws lllegalStateException

Throws:
lllegalStateException

Submit a bug or feature to FT\API Programming Support

it.list.jft
Interface FilterParam

All Superinterfaces:
Param

public interface FilterParam
extends Param

Filter parameter container.

This container of filter parameters is created by Context.makeFilterParam() and it is used by

Context.makeFilter().

See Also:
Filter Usage, Acceptable Values

Method Summary

String [getDefinition()

Returns the filter definition of the new filter.

int | getEntityClassID()

Returns the EntityClassID of the associated EntityClass of the new filter.

int | getType()

Returns the filter type of the new filter.

122

it.list.jftinterface EntityClassQueryParam

mailto:ftapi@list-group.com

it.list.jftinterface FilterParam Q I_I ST

void | setDefinition(String definition)
Set/replace the filter definition of the new filter.

void |setEntityClassID(int entityClassID)
Set/replace the associated EntityClass of the new filter.

void |setType(int type)
Set/replace the filter type of the new filter.

Methods inherited from interface Param

isBound

Method Detail

getEntityClassID

int getEntityClassID()
Returns the EntityClassID of the associated EntityClass of the new filter.

The associated EntityClass is one of the 3 things that define a filter: (associated EntityClass, filter type
and the optional filter definition).

The precise meaning of these 3 things depends from the particular filter and, in general, it must be agreed
between the client and the server.

The server may subsequently returns a
FilterCreateEvent.RESULT _INVALID_ENTITY_CLASS_ID failure—code if it does not understand
this value.

Used by:
Filter.create()
Default value:
0
Acceptable values:
JFT.THIS.isRegistered(getEntityClassID())
Returns:
the EntityClassID of the associated EntityClass of the new filter.
See Also:
who sets this value

getType

int getType()

it.list.jftinterface FilterParam 123

@ LI ST it.list.jftinterface FilterParam

Returns the filter type of the new filter.

The filter type is one of the 3 things that define a filter: (associated EntityClass, filter type and the optional
filter definition).

The precise meaning of these 3 things depends from the particular filter and, in general, it must be agreed
between the client and the server.

The server may subsequently returns a FilterCreateEvent. RESULT_INVALID_FILTER_TYPE
failure—code if it does not understand this value.

Used by:
Filter.create()
Default value:
0
Acceptable values:
getType() >=0
Returns:
the filter type of the new filter.
See Also:
who sets this value

getDefinition
String getDefinition()
Returns the filter definition of the new filter.

The filter definition is one of the 3 things that define a filter: (associated EntityClass, filter type and the
optional filter definition).

The precise meaning of these 3 things depends from the particular filter and, in general, it must be agreed
between the client and the server.

The server may subsequently returns a FilterCreateEvent. RESULT_SYNTAX_ERROR or a
FilterCreateEvent. RESULT INVALID_FILTER_LEN failure—code if it does not understand this
value or if this value is too long.

This value is optional: null and empty strings are acceptable values and, in this case, no definition is given
to the server.

Used by:
Filter.create()
Default value:
null.
Acceptable values:
true // any value
Returns:
the filter definition of the new filter.
See Also:
who sets this value

124 it.list.jftinterface FilterParam

it.list.jftinterface FilterParam Q I_I ST

setEntityClassID

void setEntityClassID(int entityClassID)
throws lllegalStateException

Set/replace the associated EntityClass of the new filter.
Parameters:
entityClassID — EntityClassID of the associated EntityClass of the new filter.
Throws:
lllegalStateException — if this container is already bound.
See Also:
default/current/acceptable values and their meaning

setType

void setType(int type)
throws lllegalStateException

Set/replace the filter type of the new filter.
Parameters:
type — type of the new filter.
Throws:
lllegalStateException — if this container is already bound.
See Also:
default/current/acceptable values and their meaning

setDefinition

void setDefinition(String definition)
throws lllegalStateException

Set/replace the filter definition of the new filter.
Parameters:
definition — filter definition of the new filter.
Throws:
lllegalStateException — if this container is already bound.
See Also:
default/current/acceptable values and their meaning

Submit a bug or feature to FT\API Programming Support

it.list.jft
Interface MulticastConnectionParam

All Superinterfaces:
Param

it.list.jftinterface FilterParam 125

mailto:ftapi@list-group.com

& I..I ST it.list.jftinterface MulticastConnectionParam

public interface MulticastConnectionParam
extends Param

Method Summary
String |getAddress()
String | getCharSet()
int |getPort()
void |setAdress(String address)
void | setCharSet(String charSet)
void |setPort(int port)

Methods inherited from interface Param

isBound

Method Detail

getAddress

String getAddress()

getPort

int getPort()

getCharSet

String getCharSet()

126

it.list.jftinterface MulticastConnectionParam

setAdress

void setAdress(String address)

it.list.jftinterface MulticastConnectionParam

throws lllegalStateException

Throws:

lllegalStateException

& LisT

setPort

void setPort(int port)

throws lllegalStateException

Throws:

lllegalStateException

setCharSet

void setCharSet(String charSet)

throws lllegalStateException

Throws:

lllegalStateException

Submit a bug or feature to FT\API Programming Support

it list jft

Interface QueryParam

All Superinterfaces:
Param

public interface QueryParam
extends Param

Query parameter container.

This container of query parameters is created by Context.makeQueryParam() and it is used by

Context.makeQuery().

See Also:

Query Usage, Acceptable Values

Method Summary

int

getQuerylD()
Returns the QueryID of the new query.

Entity

getQueryParameterEntity()

it.list.jftinterface MulticastConnectionParam

127

mailto:ftapi@list-group.com

& LI ST it.list.jftinterface QueryParam

Returns the Query Parameter Entity of the new query.

void |setQuerylD(int queryID)
Set/replace the QuerylD of the new query.

void |setQueryParameterEntity(Entity queryParameter)
Set/replace the Query Parameter Entity of the new query.

Methods inherited from interface Param

isBound

Method Detail

getQuerylD
int getQueryID()
Returns the QueryID of the new query.

The QuerylD identifies a given query into the server and so its value must be agreed between the client and
the server.

The server may subsequently returns QueryCreateEvent. RESULT _WRONG_QUERY_ID failure—code if
it does not understand this value.

Used by:
Query.create()
Default value:
0
Acceptable values:
getQueryID() >0
Returns:
the QueryID of the new query.
See Also:
who sets this value

getQueryParameterEntity
Entity getQueryParameterEntity()
Returns the Query Parameter Entity of the new query.

The Query Parameter Entity is the argument of the new query and it is given to the server and so its meanin
must be agreed between the client and the server.

128 it.list.jftinterface QueryParam

it.list.jftinterface QueryParam Q I_I ST

The server may subsequently returns QueryCreateEvent. RESULT _BAD_PARAMETERS failure—code if
it does not understand this value.

This value is optional: null is an acceptable value and, in this case, no argument is given to the server.

Used by:
Query.create()
Default value:
null
Acceptable values:
true // any value
Returns:
the QueryID of the new query.
See Also:
who sets this value

setQuerylD

void setQueryID(int queryID)
throws lllegalStateException

Set/replace the QueryID of the new query.
Parameters:
guerylD - the QueryID of the new query.
Throws:
lllegalStateException — if this container is already bound.
See Also:
default/current/acceptable values and their meaning

setQueryParameterEntity

void setQueryParameterEntity(Entity queryParameter)
throws lllegalStateException

Set/replace the Query Parameter Entity of the new query.
Parameters:
gueryParameter — the Query Parameter Entity of the new query.
Throws:
lllegalStateException — if this container is already bound.
See Also:
default/current/acceptable values and their meaning

Submit a bug or feature to FT\API Programming Support

it.list.jft
Interface SubscriptionParam

All Superinterfaces:

it.list.jftinterface QueryParam 129

mailto:ftapi@list-group.com

@ LI ST it list.jftinterface QueryParam

Param

public interface SubscriptionParam
extends Param

Subscription parameter container.

This container of subscription parameters is created by Context.makeSubscriptionParam() and it is used by
Context.makeSubscription().

See Also:

Subscription Usage, Incremental Subscriptions, Partial Subscriptions, Acceptable Values

Field Summary
static int QUERY_TYPE_ALL
Query selection code: all entities.
static int QUERY_TYPE_ON_TIME
Query selection code: only current entities values.
static int QUERY_TYPE_PAST
Query selection code: only past entities values and then idle event.
static int QUERY_TYPE_SET
Query selection code: all entities that match a partial EntityKey.
static int SUBSCRIBE_FLOW_ALL
Data transmission policy code: all variations sent by the server.
static int SUBSCRIBE_FLOW_LAST
Data transmission policy code: only the most recent snapshot of each entity sent by the
static int SUBSCRIBE_MASKED FLOW_ALL
Data transmission policy code: all variations sent by the server.
static int SUBSCRIBE_MASKED FLOW_LAST
Data transmission policy code: only the most recent snapshot of each entity sent by the

int

Method Summary

getEntityClassID()
Returns the requested EntityClassID of the EntityClass for the new Subscription.

TimeStamp | getEntityClassTimeStamp()
Returns the EntityClass TimeStamp of the last past notification received by the client.
int | getEntityClassVersion()
Returns the EntityClass version of the last past notification received by the client.
EntityKey | getEntityKey()

Returns the partial EntityKey for the new subscription.

130

it.list.jftinterface QueryParam

server.

Server.

it.list.jftinterface SubscriptionParam Q I.I ST

ent.

Filter | getFilter()
Returns the optional filter for the new subscription.
int | getFlow()
Returns the requested data transimission policy for the new subscription.
Mask | getMask()
Returns the optional mask for the new subscription.
it |getQueryType()
Returns the requested query selection criteria for the new subscription.
void |setEntityClassID(int entityClassID)
Set/replace the requested EntityClassID of the EntityClass for the new Subscription.
void |setEntityClassTimeStamp(TimeStamp entityClassTimeStamp)
Set/replace the EntityClass TimeStamp of the last past notification received by the cli¢
void | setEntityClassVersion(int entityClassVersion)
Set/replace the EntityClass version of the last past notification received by the client.
void |setEntityKey(EntityKey entityKey)
Set/replace the partial EntityKey for the new subscription.
void | setFilter(Filter filter)
Set/replace the optional filter for the new subscription.
void | setFlow(int subscribeFlow)
Set/replace the requested data transimission policy for the new subscription.
void |setMask(Mask mask)
Set/replace the optional mask for the new subscription.
void |setQueryType(int queryType)

Set/replace the requested query selection criteria for the new subscription.

Methods inherited from interface Param

isBound

Field Detall

SUBSCRIBE_FLOW_ALL

static final int SUBSCRIBE_FLOW_ALL

Data transmission policy code: all variations sent by the server.

This value may be set with setFlow(int) and retrieved by getFlow().

See Also:

Constant Field Values

it.list.jftinterface SubscriptionParam 131

@ I.I ST it.list.jftinterface SubscriptionParam

SUBSCRIBE_FLOW_LAST

static final int SUBSCRIBE_FLOW_LAST
Data transmission policy code: only the most recent snapshot of each entity sent by the server.
This value may be set with setFlow(int) and retrieved by getFlow().

See Also:
Constant Field Values

SUBSCRIBE_MASKED FLOW_ALL

static final int SUBSCRIBE_MASKED_FLOW_ALL
Data transmission policy code: all variations sent by the server.
The transmission is optimized in a transparent way in a manner that only non-zero values are sent. Please
note that this is only an optimization hint and so it does not change the behaviour of
SubscriptionNotifyEvent.isMasked().

This value may be set with setFlow(int) and retrieved by getFlow().

See Also:
Constant Field Values

SUBSCRIBE_MASKED FLOW_LAST

static final int SUBSCRIBE_MASKED_FLOW_LAST
Data transmission policy code: only the most recent snapshot of each entity sent by the server.
The transmission is optimized in a transparent way in a manner that only non-zero values are sent. Please
note that this is only an optimization hint and so it does not change the behaviour of
SubscriptionNotifyEvent.isMasked().

This value may be set with setFlow(int) and retrieved by getFlow().

See Also:
Constant Field Values

QUERY_TYPE_ALL
static final int QUERY_TYPE_ALL
Query selection code: all entities.

This value may be set with setQueryType(int) and retrieved by getQueryType().

132 it.list.jftinterface SubscriptionParam

it.list.jftinterface SubscriptionParam Q I.I ST

See Also:
Constant Field Values

QUERY_TYPE_SET
static final int QUERY_TYPE_SET
Query selection code: all entities that match a partial EntityKey.
This value may be set with setQueryType(int) and retrieved by getQueryType().

See Also:
Constant Field Values

QUERY_TYPE_PAST
static final int QUERY_TYPE_PAST
Query selection code: only past entities values and then idle event.
This value may be set with setQueryType(int) and retrieved by getQueryType().

See Also:
Constant Field Values

QUERY_TYPE_ON_TIME
static final int QUERY_TYPE_ON_TIME
Query selection code: only current entities values.
This value may be set with setQueryType(int) and retrieved by getQueryType().

See Also:
Constant Field Values

Method Detalil

getEntityClassID

int getEntityClassID()
Returns the requested EntityClassID of the EntityClass for the new Subscription.
Used by:

Subscription.start()
Default value:

it.list.jftinterface SubscriptionParam 133

=

I.I ST it.list.jftinterface SubscriptionParam
0

Acceptable values:

JFT.THIS.isRegistered(getEntityClassID())
Returns:

the requested EntityClassID of the EntityClass for the new Subscription.
See Also:

who sets this value

getEntityClassVersion

int getEntityClassVersion()

Returns the EntityClass version of the last past notification received by the client.
See Incremental Subscriptions to understand how to use this value.

Used by:
Subscription.start()
Default value:
0
Acceptable values:
getEntityClassTimeStamp() == null ? value == 0 : value > 0
Returns:
the EntityClassID of the EntityClass on which the new Subscription is made.
See Also:
who sets this value, Incremental Subscriptions

getEntityClassTimeStamp

TimeStamp getEntityClassTimeStamp()

Returns the EntityClass TimeStamp of the last past notification received by the client.
See Incremental Subscriptions to understand how to use this value.

Used by:
Subscription.start()
Default value:
null
Acceptable values:
getEntityClassTimeStamp() == null
? getEntityClassVersion() ==
: getEntityClassVersion() > 0
Returns:
the EntityClass TimeStamp of the last past notification received by the client.
See Also:
who sets this value, Incremental Subscriptions

134

it.list.jftinterface SubscriptionParam

it.list.jftinterface SubscriptionParam @ I.I ST

getQueryType

int getQueryType()
Returns the requested query selection criteria for the new subscription.
The requested query selection criteria may be one of:

O QUERY_TYPE_ALL to request notifications for all entities:
past entities values,
and then idle event,
and then current values.

O QUERY_TYPE_SET to request notifications for entities that match a partial EntityKey:

past entities values,
and then idle event,
and then current values.

0 QUERY_TYPE_PAST to request notifications for only past entities values:
past entities values,
and then idle event.

0 QUERY_TYPE_ON_TIME to request notifications for only current entities values:
current values.

See Partial Subscriptions to understand how to use this value with partial subscriptions.

Used by:

Subscription.start()
Default value:

QUERY_TYPE_ALL
Acceptable values:

getQueryType == QUERY_TYPE_ALL

|| getQueryType == QUERY_TYPE_SET

|| getQueryType == QUERY_TYPE_PAST

|| getQueryType == QUERY_TYPE_ON_TIME
Returns:

the requested query selection criteria for the new subscription.
See Also:

who sets this value, Partial Subscriptions

getEntityKey
EntityKey getEntityKey()
Returns the partial EntityKey for the new subscription.

See Partial Subscriptions to understand how to use this value.

Used by:
Subscription.start()
Default value:
null
Acceptable values:

it.list.jftinterface SubscriptionParam

135

=

I.I ST it.list.jftinterface SubscriptionParam

getQueryType() == QUERY_TYPE_SET
? (getEntityKey() != null & getEntityKey().getEntityClassID() ==
getEntityClassID())
: getEntityKey() == null
Returns:
the partial EntityKey for the new subscription.
See Also:
who sets this value, Partial Subscriptions

getFilter

Filter

getFilter()
Returns the optional filter for the new subscription.

The filter is used to restrict (at the server level) the set of entities that will be notified.

Used by:
Subscription.start()
Default value:
null
Acceptable values:
getFilter() == null || getFilter().getStatus() ==
Filter. STATUS_CREATED &getQueryType() = QUERY_TYPE_SET
Returns:
the optional filter for the new subscription.
See Also:
who sets this value

getFlow

int getFlow()

136

Returns the requested data transimission policy for the new subscription.
The requested data transimission policy may be one of:

0 SUBSCRIBE_FLOW_LAST or SUBSCRIBE_MASKED_FLOW_LAST to request only the most recer

shapshot of each entity sent by the server,
0 SUBSCRIBE_FLOW_ALL or SUBSCRIBE_MASKED_ FLOW_ALL to request all variations sent by
the server.
With the first two values the quantity of the data sent by the server is adapted to the reception speed of the
client. In practice, to each send operation, the server only sends the most recent image of the entity, respec
the previous send.

The latter two values require the server to send all the variations of the entities of the subscribed class.
Basically SUBSCRIBE_*FLOW_LAST adapts the transmission resolution of the Server to the reception ban

of the Client. SUBSCRIBE_*FLOW_ALL, on the other hand, requires each intermediate variation of the
Server DataBase to be submitted. Thus delays in the acquisition by the Client may occur due to the increas

it.list.jftinterface SubscriptionParam

it.list.jftinterface SubscriptionParam @ I.I ST

load of the buffer nside the communication channel.

The SUBSCRIBE_MASKED_FLOW_LAST and SUBSCRIBE_MASKED_FLOW_ALL are equivalent to the
non-MASKED version, apart the fact the transmission is optimized in a manner that only all non-zero value
are sent from server to client. This optimization is transparent to the client application, e.g. the behavior of
SubscriptionNotifyEvent.isMasked() does not change for MASKED or non—-MASKED flow

values.

Used by:
Subscription.start()
Default value:
SUBSCRIBE_FLOW_ALL
Acceptable values:
getFlow() == SUBSCRIBE_FLOW_ALL || getFlow() == SUBSCRIBE_FLOW_LAST
|
getFlow() == SUBSCRIBE_MASKED_FLOW_ALL || getFlow() ==
SUBSCRIBE_MASKED_FLOW_LAST
Returns:
the requested data transimission policy for the new subscription.
See Also:
who sets this value

getMask
Mask getMask()
Returns the optional mask for the new subscription.
The mask is used to restrict (at the server level) the set of fields of entities that will be notified.

If this value is not—null then the Entitity returned by SubscriptionNotifyEvent.getEntity()
will contain only the fields specified by this mask.

Used by:
Subscription.start()
Default value:
null
Acceptable values:
getMask() == null || getMask().getEntityClassID() ==
getEntityClassID()
Returns:
the optional mask for the new subscription.
See Also:
who sets this value

setEntityClassID

void setEntityClassID(int entityClassID)
throws lllegalStateException

it.list.jftinterface SubscriptionParam 137

& I.I ST it.list.jftinterface SubscriptionParam

Set/replace the requested EntityClassID of the EntityClass for the new Subscription.

Parameters:

entityClassID - the requested EntityClassID of the EntityClass for the new Subscription.
Throws:

lllegalStateException — if this container is already bound.
See Also:

default/current/acceptable values and their meaning

setEntityClassVersion

void setEntityClassVersion(int entityClassVersion)
throws lllegalStateException

Set/replace the EntityClass version of the last past notification received by the client.
Parameters:
entityClassVersion - the requested EntityClassID of the EntityClass for the new Subscription.
Throws:
lllegalStateException — if this container is already bound.
See Also:
default/current/acceptable values and their meaning

setEntityClassTimeStamp

void setEntityClassTimeStamp(TimeStamp entityClassTimeStamp)
throws lllegalStateException

Set/replace the EntityClass TimeStamp of the last past notification received by the client.

Parameters:
entityClassTimeStamp - the EntityClass TimeStamp of the last past notification received by
the client.

Throws:
lllegalStateException - if this container is already bound.

See Also:
default/current/acceptable values and their meaning

setQueryType

void setQueryType(int queryType)
throws lllegalStateException

Set/replace the requested query selection criteria for the new subscription.
Parameters:

gueryType - the requested query selection criteria for the new subscription.
Throws:

lllegalStateException - if this container is already bound.
See Also:

default/current/acceptable values and their meaning

138 it.list.jftinterface SubscriptionParam

it.list.jftinterface SubscriptionParam @ I.I ST

setEntityKey

void setEntityKey(EntityKey entityKey)
throws lllegalStateException

Set/replace the partial EntityKey for the new subscription.
Parameters:

entityKey — the partial EntityKey for the new subscription.
Throws:

lllegalStateException - if this container is already bound.
See Also:

default/current/acceptable values and their meaning

setFilter

void setFilter(Filter filter)
throws lllegalStateException

Set/replace the optional filter for the new subscription.
Parameters:

filter — the optional filter for the new subscription.
Throws:

lllegalStateException — if this container is already bound.
See Also:

default/current/acceptable values and their meaning

setFlow

void setFlow(int subscribeFlow)
throws lllegalStateException

Set/replace the requested data transimission policy for the new subscription.
Parameters:

subscribeFlow — the requested data transimission policy for the new subscription.
Throws:

lllegalStateException — if this container is already bound.
See Also:

default/current/acceptable values and their meaning

setMask

void setMask(Mask mask)
throws lllegalStateException

Set/replace the optional mask for the new subscription.
Parameters:

mask — the optional mask for the new subscription.
Throws:

lllegalStateException - if this container is already bound.

it.list.jftinterface SubscriptionParam 139

& I.I ST it.list.jft Interface TransactionParam

See Also:
default/current/acceptable values and their meaning

Submit a bug or feature to FT\API Programming Support

it.list.jft
Interface TransactionParam

All Superinterfaces:
Param

public interface TransactionParam
extends Param

Transaction parameter container.

This container of transaction parameters is created by Context.makeTransactionParam() and it is used by
Context.makeTransaction().

See Also:
Transaction Usage, Acceptable Values

Field Summary

static int ACTION_ENTITY_ADD
Action—code: request to add an entity on the server.

static int ACTION_ENTITY_DEL
Action—code: request to logically remove an entity from the server.

static int ACTION_ENTITY_KIL
Action—code: request to physically remove an entity from the server.

static int ACTION_ENTITY_RWT
Action—code: request to replace an entity on the server.

Method Summary

int [getAction()
Returns the requested action of a new transaction.

Entity [getEntity()
Returns the Entity of a new transaction.

int [getKeylD()
Returns the KeyID of a new transaction.

Mask | getMask()

140 it.list.jft Interface TransactionParam

mailto:ftapi@list-group.com

it.list.jftinterface TransactionParam @ LI ST

Returns the optional mask of a new transaction.

TransactionlD getPendingTransactionlID()
Returns the TransactionlID of a past transaction.

boolean | getResEntityRequired()
Returns the indication that client want an Entity come back from the server.

void |setAction(int action)
Set/replace the requested action of a new transaction.

void |setEntity(Entity entity)
Set/replace the Entity of a new transaction.

void | setKeylD(int keyID)
Set/replace the KeylD of a new transaction.

void |setMask(Mask mask)
Set/replace the optional mask of a new transaction.

void |setPendingTransactionID(TransactionID transactionID)
Set/replace the TransactionID of a past transaction.

void | setResEntityRequired(boolean required)
Set/replace the indication that client want an Entity come back from the server.

Methods inherited from interface Param

isBound

Field Detall

ACTION_ENTITY_ADD
static final int ACTION_ENTITY_ADD
Action—code: request to add an entity on the server.
This value may be set with setAction(int) and retrieved by getAction().

See Also:
Constant Field Values

ACTION_ENTITY_DEL

static final int ACTION_ENTITY_DEL
Action—code: request to logically remove an entity from the server.

This value may be set with setAction(int) and retrieved by getAction().

it.list.jftinterface TransactionParam 141

@ I.I ST it.list.jftinterface TransactionParam

See Also:
Constant Field Values

ACTION_ENTITY_RWT
static final int ACTION_ENTITY_RWT
Action—code: request to replace an entity on the server.
This value may be set with setAction(int) and retrieved by getAction().

See Also:
Constant Field Values

ACTION_ENTITY_KIL

static final int ACTION_ENTITY_KIL
Action—code: request to physically remove an entity from the server.
This value may be set with setAction(int) and retrieved by getAction().

See Also:
Constant Field Values

Method Detail

getAction

int getAction()
Returns the requested action of a new transaction.
The requested action may be one of:

O ACTION_ENTITY_ADD to request to add an entity,

O ACTION_ENTITY_DEL to request to logically remove an entity,
O ACTION_ENTITY_RWT to request to rewrite an entity,

O ACTION_ENTITY_KIL to request to physically remove an entity.

Used by:
Transaction.send()
Default value:
ACTION_ENTITY_ADD
Acceptable values:
getAction() == ACTION_ENTITY_ADD
|| getAction() == ACTION_ENTITY_DEL
|| getAction() == ACTION_ENTITY_RWT

142 it.list.jftinterface TransactionParam

it.list.jftinterface TransactionParam @ LI ST

|| getAction() == ACTION_ENTITY_KIL
Returns:

the requested action of a new transaction.
See Also:

who sets this value

getKeylD

int getKeylID()

Returns the KeyID of a new transaction.

KeyID may be a primary key of the EntityClass of getEntity(), otherwise it is zero. In the first case
all the KeylID fields of the Entity must be properly filled.

Used by:

Transaction.send()
Default value:

0
Acceptable values:

getkeylD() == 0

|| getEntity() '= null &getEntity().iskey(getKeyID(), true)
Returns:

the KeyID of a new transaction.
See Also:

who sets this value

getEntity

Entity

getEntity()

Returns the Entity of a new transaction.

This is the Entity on which the action will be done.

The fields of this Entity that must be properly filled are:

¢ all fields of the primary key described by getKeylD() (if getKeyID() is not zero),
¢ all fields of the mask described by getMask() (if getMask() is not null).
All others fields of this Entity may be properly filled.

Used by:
Transaction.send()
Default value:
null
Acceptable values:
(getEntity() == null) != (getPendingTransactionID() == null)
Returns:
the Entity of a new transaction.
See Also:

it.list.jftinterface TransactionParam 143

@ I.I ST it.list.jftinterface TransactionParam

who sets this value

getMask
Mask getMask()
Returns the optional mask of a new transaction.

When this value is not null it describes which fields of the Entity must be
properly filled, because they will be sent to the server.

This mask and the Entity must refer to the same EntityClass.

Used by:
Transaction.send()
Default value:
null
Acceptable values:
getMask() == null
|| getEntity() != null &getMask().getEntityClassID() ==
getEntity().getEntityClassID()
Returns:
the optional mask of a new transaction.
See Also:
who sets this value

getResEntityRequired
boolean getResEntityRequired()
Returns the indication that client want an Entity come back from the server.

When this value is false the server will not send back an Entity to the client inside the
TransactionSendEvent and TransactionQueryEvent answers to the Transaction.send()
and Transaction.query() requests.

Otherwise, when this value is true the server can choose to put an Entity in the answer. In this case the clier
may find a not—null returned value of TransactionEvent.getEntity().

Used by:
Transaction.send() and Transaction.query()
Default value:
false
Acceptable values:
true // any value
Returns:
the indication that client want an Entity come back from the server.
See Also:
who sets this value

144 it.list.jftinterface TransactionParam

it.list.jftinterface TransactionParam @ LI ST

getPendingTransactionlD
TransactionlD getPendingTransactionID()
Returns the TransactionID of a past transaction.

If this value is not null then Context.makeTransaction() will attempt to create a Transaction that
refers a past transaction with this TransactionID. In this case this TransactionID must belong to the same
Connection on which the Transaction will be created.

Used by:

Transaction.getTransactionID() and Transaction.query()
Default value:

null
Acceptable values:

(getPendingTransactionID() == null) != (getEntity() == null)
Returns:

the TransactionID of a past transaction.
See Also:

who sets this value

setAction

void setAction(int action)
throws lllegalStateException

Set/replace the requested action of a new transaction.
Parameters:

action — the requested action of a new transaction.
Throws:

lllegalStateException — if this container is already bound.
See Also:

default/current/acceptable values and their meaning

setKeylID

void setKeyID(int keyID)
throws lllegalStateException

Set/replace the KeylD of a new transaction.
Parameters:
keyID - the KeyID of a new transaction.
Throws:
lllegalStateException — if this container is already bound.
See Also:
default/current/acceptable values and their meaning

it.list.jftinterface TransactionParam 145

@ I.I ST it.list.jftinterface TransactionParam

setEntity

void setEntity(Entity entity)
throws lllegalStateException

Set/replace the Entity of a new transaction.
Parameters:
entity — the Entity of a new transaction.
Throws:
lllegalStateException — if this container is already bound.
See Also:
default/current/acceptable values and their meaning

setMask

void setMask(Mask mask)
throws lllegalStateException

Set/replace the optional mask of a new transaction.
Parameters:
mask - the optional mask of a new transaction.
Throws:
lllegalStateException — if this container is already bound.
See Also:
default/current/acceptable values and their meaning

setResEntityRequired

void setResEntityRequired(boolean required)
throws lllegalStateException

Set/replace the indication that client want an Entity come back from the server.

Parameters:

required — the indication that client want an Entity come back from the server.
Throws:

lllegalStateException — if this container is already bound.
See Also:

default/current/acceptable values and their meaning

setPendingTransactionID

void setPendingTransactionID(TransactionlD transactionID)
throws lllegalStateException

Set/replace the TransactionlID of a past transaction.
Parameters:

transactionID — the TransactionID of a past transaction.
Throws:

lllegalStateException - if this container is already bound.

146 it.list.jftinterface TransactionParam

it.list.jft Interface TimeStamp & I_I ST
See Also:

default/current/acceptable values and their meaning

Submit a bug or feature to FT\API Programming Support

it.list.jft
Interface TimeStamp

All Superinterfaces:
Serializable

public interface TimeStamp
extends Serializable

Interface that allows to represent a temporal indicator.
Each timestamp is represented by a couple of int:
 the number of seconds since the standard base time known as "the epoch”, namely January 1, 1970, 00:00.
. Srllvli-rll-(.:remental counter used to make the time stamps univocal when it was generated within the same time
unit.

This interface extend the Serializable interface in order to save and then re—create TimeStamp objects.

In alternative a programmer may save the two ints returned by getDateTime() and getProg() and then
re—create the same TimeStamp object using the JFT.makeTimeStamp() with the 2 saved ints as parameters.

Method Summary

int fcompareTo(TimeStamp timeStamp)
Compare two TimeStamps.

int |getDateTime()
Returns the number of seconds since January 1, 1970, 00:00:00 GMT.

int |getProg()
Returns the associated incremental counter.

Method Detail

it.list.jft Interface TimeStamp 147

mailto:ftapi@list-group.com

& LI ST it.list.jftinterface TimeStamp

getDateTime

int getDateTime()
Returns the number of seconds since January 1, 1970, 00:00:00 GMT.

To obtain a Date object use:
new Date(getDateTime()*1000L)
Returns:
the number of seconds since January 1, 1970, 00:00:00 GMT.

getProg
int getProg()
Returns the associated incremental counter.

The incremental counter is used to make the time stamp univocal when it was generated within the same tir
unit.
Returns:

the associated incremental counter.

compareTo
int compareTo(TimeStamp timeStamp)

Compare two TimeStamps.

Parameters:
timeStamp - the TimeStamp to be compared.

Returns:
a negative integer, zero, or a positive integer as this TimeStamp is less than, equal to, or greater tha
the specified TimeStamp.

Submit a bug or feature to FT\API Programming Support

it.list.jft
Interface TransactionIlD

All Superinterfaces:
Serializable

public interface TransactionID
extends Serializable

Interface that allows to identify a Transaction.

Each Transaction is identified by a Transaction|D made of:

148 it.list.jftinterface TimeStamp

mailto:ftapi@list-group.com

it.list.jftinterface TransactionID @ LI ST

* the client from which the transaction was sent,
normally automatically generated by Transaction.send() with the value
ConnectionParam.getClientID() of the Connection on which the transaction was sent.

* the couple ClientServicelD and BusinessServicelD to which the transaction was sent,
normally automatically generated by Transaction.send() with the couple
ConnectionOpenEvent.getClientServicelD() and
ConnectionOpenEvent.getBusinessServicelD() returned on the Connection on which the
transaction was sent.

« the client TimeStamp of when the transaction was sent,
normally automatically generated by Transaction.send() with the sent time and an incremental
counter.

All TransactionIDs share a belongsTo() method to check their compatibility with a given Connection.
This interface extend the Serializable interface in order to save and then re—create TransactionlID objects.
In alternative a programmer may save the five ints returned by getClientlD(), getClientServicelD(),

getBusinessServicelD(), getTimeStamp() and then re—create the same TransactionID object using the
JFT.makeTransactionID() with the 5 saved ints as parameters.

Method Summary

boolean |belongsTo(Connection connection)
Returns the compatibility of this TransactionID with a given Connection.

int |getBusinessServicelD()
Returns the BusinessServicelD to which the transaction was sent.

int |getClientID()
Returns the ClientID from which the transaction was sent.

int getClientServicelD()
Returns the ClientServicelD to which the transaction was sent.

TimeStamp | getTimeStamp()
Returns the TimeStamp of when the transaction was sent.

Method Detail

belongsTo
boolean belongsTo(Connection connection)
Returns the compatibility of this TransactionID with a given Connection.

Only a compatible transactionID can be successfully queried using a
TransactionParam.setPendingTransactionID().

it.list.jftinterface TransactionID 149

@ LI ST it.list.jftinterface TransactionID

A TransactionID is compatible with a Connection if:

0 the TransactionID clientID is equals to the Connection ClientlD,
¢ and the TransactionID ClientServicelD is equals to the Connection ClientServicelD,
¢ and the TransactionID BusinessServicelD is equals to the Connection BusinessServicelD.

Parameters:
connection — Connection to be checked for compatibility
Returns:

the compatibility of this TransactionID with a given Connection.

false is returned when the connection parameter is null,

or when the connection status is not Connection.STATUS CONNECTED.

See Also:

Transaction.query(), TransactionParam.getPendingTransactionID()

getClientID
int getClientID()

Returns the ClientID from which the transaction was sent.
Returns:

the ClientID from which the transaction was sent.
See Also:

ConnectionParam.getClientID()

getClientServicelD
int getClientServicelD()

Returns the ClientServicelD to which the transaction was sent.
Returns:

the ClientServicelD to which the transaction was sent.
See Also:

ConnectionOpenEvent.getClientServicelD()

getBusinessServicelD

int getBusinessServicelD()

Returns the BusinessServicelD to which the transaction was sent.

Returns:

the BusinessServicelD to which the transaction was sent.
See Also:

ConnectionOpenEvent.getBusinessServicelD()

getTimeStamp

TimeStamp getTimeStamp()

150

it.list.jftinterface TransactionID

it.list.jft Interface Tracer & I_I ST

Returns the TimeStamp of when the transaction was sent.
Returns:
the TimeStamp of when the transaction was sent.
null is never returned.

Submit a bug or feature to FT\API Programming Support

it.list.jft
Interface Tracer

public interface Tracer
Interface to be implemented in order to handle the library trace.

This interface may be bound to the library with the JFT.setTraceMode(Tracer) invocation.

Method Summary

void |onTrace(Date timeStamp, String module, int traceLevel, String message)
Called whenever a trace—message is availbale.

Method Detalil

onTrace

void onTrace(Date timeStamp,
String module,
int traceLevel,
String message)

Called whenever a trace—message is availbale.

This method is automatically invoked when the trace is enabled and the trace—-message level tracelLevel
>= current trace level.
Parameters:

timeStamp - date.

module — JFT library module name.

traceLevel — trace—-message level: one of availables levels described in

JFT.setTracelLevel().

message — trace—message.

Submit a bug or feature to FT\API Programming Support

it.list.jft Interface Tracer 151

mailto:ftapi@list-group.com
mailto:ftapi@list-group.com

@ LI ST Package it.list.jft.event

Package it.list.jft.event

Provides interfaces for dealing with different types of events and listeners.

See:
Description

Interface Summary

ConnectionCloseEvent Server—answer to Connection.close().
ConnectionEvent Generic event related to the Connection Lifecycle.
ConnectionListener Interface to be implemented in order to handle the Connection Lifecycle.

Event generated when the connection with the server crashed or when the sefver

ConnectionLostEvent . .
choose to terminate the connection.

ConnectionOpenEvent Server—answer to Connection.open().

EntityClassQueryEvent

EntityClassQueryListener

Event Super—-interface common to all events.

FilterCreateEvent Server—answer to Filter.create().

FilterDestroyEvent Server—answer to Filter.destroy().

FilterEvent Generic event related to the Filter Lifecycle.

FilterListener Interface to be implemented in order to handle the Filter Lifecycle.
FilterSetEvent Server—answer to Filter.set(java.lang.String).

Listener Super-interface common to all listener interfaces.

MulticastConnectionEvent

MulticastConnectionListener

QueryCreateEvent Server—answer to Query.create().

QueryDestroyEvent Server—answer to Query.destroy().

QueryEvent Generic event related to the Query Lifecycle.

QueryListener Interface to be implemented in order to handle the Query Lifecycle.
QueryNotifyEvent E\Y:i?atléglgnerated when a single entity (or the EOQ indication) of a query resul{-set is
QueryRowsEvent Server—answer to Query.queryRows().

SubscriptionEvent Generic event related to the Subscription Lifecycle.

Event generated when the flow of historical data is finished and the start of agtual

SubscriptionidleEvent data is starting,

SubscriptionListener Interface to be implemented in order to handle the Subscription Lifecycle.

Event generated when an actual or historical data or a server—answer to

SubscriptionNotifyEvent Subscription.refreshEntity() is available.

152 Package it.list.jft.event

Package it.list.jft.event Description @ I_I ST

SubscriptionStartEvent

Server—answer to Subscription.start().

SubscriptionStopEvent

Server—answer to Subscription.stop().

TransactionEvent

Generic event related to the Transaction Lifecycle.

TransactionListener

Interface to be implemented in order to handle the Transaction Lifecycle.

TransactionQueryEvent

Server—answer to Transaction.query().

TransactionSendEvent

Server—answer to Transaction.send().

Package it.list.jft.event Description

Provides interfaces for dealing with different types of events and listeners.

Implementation of Listener sub—interfaces must be provided by the JFT application.
Implementation of Listener sub—interfaces are already provided by the JFT library.

See the hierarchy of this it.list.jft.event package and the Event and Listener documentation for details.

Package it.list.jft.event Data Model

Package it.list.jft.event Description 153

@ Ll ST Hierarchy For Package it.list.jft.event

Event
petResult()
Query Transaction Subscription Filter Connection
querylD action entityClassTimeStamp type host, port
Create() kel D entityClassVersion efinition atternative host, port
ueryRows() pendingTransactionlD entitylKey value proxy host, port
pestroy() resZrEt)ltyReqUIred ::|0uweryType Crefgt =0 zﬁgzg:tion revision, signature
e I '
uery() start() Hestroy() charset
et TransactioniD() pefreshErtity() clientlD
stop() Compression
connection type
Liser type, name, password
ppen()
close()
TransactionEve
etReasonCode() 0
QueryEvent ctinesianp) | —fubsoriptiontvert L{ Fiterevent
A £)
QueryCreateEuerh TransacﬁonSendEuer}t —FubscriptionStartEuer*t —FilterCreateEuer* ConnectionOpenEuerh
petMumRowws() petBusinessServicelD()
petTimeToLive() TransactionQueryEve ubscriptionldleEve petClientServicelD()
resuttSetFollovws() +t _\b pt I* — petEnvironment()
subscriptionHoti petFTIDO)
Q ubscriptionHotifyEvertt | FinerDestroyEverk | pethtarketRevision0
ueryRowsEve - .
petAction() petSystemDateTime()
rit —reteylD()
—'Quelyﬂestroyfue getTimeStamp() -
isMasked() —lConnectuonCloseEuer}t
T - -
QuerytotifyEven —|Subscnpt|onstopEue|1(—|ConnectionLostEuer‘t
etEQQ()
petRowNumber()
Q
Entity
petFullErtityKey() P
petPartialEntitykKey()

The above figure is the UML representation of it.list.jft.event data model.
In blue all interfaces that are Events received from FastTrack server and handled by some Listener.

Submit a bug or feature to FT\API Programming Support

Hierarchy For Package it.list.jft.event

Package Hierarchies:
All Packages

154 Hierarchy For Package it.list.jft.event

mailto:ftapi@list-group.com

Interface Hierarchy @ I_I ST

Interface Hierarchy

» Event
¢ ConnectionEvent

¢ ConnectionCloseEvent

¢ ConnectionLostEvent

¢ ConnectionOpenEvent
EntityClassQueryEvent
FilterEvent

¢ FilterCreateEvent

O FilterDestroyEvent

O FilterSetEvent
MulticastConnectionEvent
QueryEvent

¢ QueryCreateEvent

¢ QueryDestroyEvent

¢ QueryNotifyEvent

¢ QueryRowsEvent
SubscriptionEvent

¢ SubscriptionldleEvent

¢ SubscriptionNotifyEvent

O SubscriptionStartEvent

O SubscriptionStopEvent
¢ TransactionEvent

¢ TransactionQueryEvent
¢ TransactionSendEvent

> o

* <

<

* Listener

+ ConnectionListener
EntityClassQueryListener
FilterListener
MulticastConnectionListener
QueryListener
SubscriptionListener
TransactionListener

<

> & & o o

Submit a bug or feature to FT\API Programming Support

it.list.jft.event
Interface Event

All Known Subinterfaces:
ConnectionCloseEvent, ConnectionEvent, ConnectionLostEvent, ConnectionOpenEvent,
EntityClassQueryEvent, FilterCreateEvent, FilterDestroyEvent, FilterEvent, FilterSetEvent,
MulticastConnectionEvent, QueryCreateEvent, QueryDestroyEvent, QueryEvent, QueryNotifyEvent,
QueryRowsEvent, SubscriptionEvent, SubscriptionldleEvent, SubscriptionNotifyEvent,
SubscriptionStartEvent, SubscriptionStopEvent, TransactionEvent, TransactionQueryEvent,
TransactionSendEvent

public interface Event

Interface Hierarchy 155

mailto:ftapi@list-group.com

@ LI ST it.list.jft.eventinterface Event

Super-interface common to all events.

Events related to the various communication objects (Connection, Filter, Query, Subscription,
Transaction) must be handled by the methods of the corresponding Listener.

Field Summary

static int RESULT_GENERIC_ERROR
Generic failure—code returned by the server when a more specific error is not availab

static int RESULT_OK
Positive answer returned by the server when the operation completed successfully.

Method Summary

int |getResult()
Returns the server—answer associated to this event.

Field Detall

RESULT _OK

static final int RESULT_OK
Positive answer returned by the server when the operation completed successfully.
This value is returned by getResult().

See Also:
Constant Field Values

RESULT_GENERIC_ERROR

static final int RESULT_GENERIC_ERROR
Generic failure—code returned by the server when a more specific error is not available.
This value is returned by getResult().

See Also:
Constant Field Values

156 it.list.jft.eventinterface Event

e.

it.list.jft.eventinterface Event & LI ST

Method Detail

getResult
int getResult()
Returns the server—answer associated to this event.

Each event generated by the server transports a server—answer that specifies how the corresponding opera
was performed on the server.

E.g.: a ConnectionOpenEvent is generated by the server as an answer to the Connection.open()
sent by the client. If the opening was OK then the server—answer (returned by this method) is RESULT_OK,
otherwise a generic (RESULT_GENERIC_ERROR) or specific (ConnectionOpenEvent result codes) error is
returned.
Returns:
the server—answer associated to this event.
It may be RESULT_OK or RESULT_GENERIC_ERROR or a different value indicating a specific
error that is described in the specific event documentation.

Submit a bug or feature to FT\API Programming Support

it.list.jft.event
Interface ConnectionEvent

All Superinterfaces:
Event

All Known Subinterfaces:
ConnectionCloseEvent, ConnectionLostEvent, ConnectionOpenEvent

public interface ConnectionEvent
extends Event

Generic event related to the Connection Lifecycle.

Events related to this super—interface must be handled by the methods of ConnectionListener.

Field Summary

Fields inherited from interface Event
RESULT_GENERIC_ERROR, RESULT_OK

it.list.jft.eventinterface Event 157

mailto:ftapi@list-group.com

& I.I ST it.list.jft.eventinterface ConnectionEvent

Method Summary

Connection | getConnection()
Returns the connection associated to this event.

Methods inherited from interface Event

getResult

Method Detail

getConnection
Connection getConnection()

Returns the connection associated to this event.
Returns:
the connection associated to this event.
null is never returned.

Submit a bug or feature to FT\API Programming Support

it.list.jft.event
Interface ConnectionCloseEvent

All Superinterfaces:
ConnectionEvent, Event

public interface ConnectionCloseEvent
extends ConnectionEvent

Server—answer to Connection.close().

This event must be handled by ConnectionListener.onConnectionClose().

Field Summary

Fields inherited from interface Event
RESULT _GENERIC_ERROR, RESULT_OK

158 it.list.jft.eventinterface ConnectionEvent

mailto:ftapi@list-group.com

it.list.jft.event Interface ConnectionLostEvent & I.I ST

Method Summary

Methods inherited from interface ConnectionEvent

getConnection

Methods inherited from interface Event

getResult

Submit a bug or feature to FT\API Programming Support

it.list.jft.event
Interface ConnectionLostEvent

All Superinterfaces:
ConnectionEvent, Event

public interface ConnectionLostEvent
extends ConnectionEvent

Event generated when the connection with the server crashed or when the server choose to terminate the connecti
This event must be handled by ConnectionListener.onConnectionLost().

With this event the server result is always Event. RESULT_GENERIC_ERROR.

Field Summary

Fields inherited from interface Event
RESULT _GENERIC_ERROR, RESULT_OK

Method Summary

Methods inherited from interface ConnectionEvent

getConnection

Methods inherited from interface Event

getResult

it.list.jft.event Interface ConnectionLostEvent 159

mailto:ftapi@list-group.com

@ I.I ST it.list.jft.event Interface ConnectionOpenEvent

Submit a bug or feature to FT\API Programming Support

it.list.jft.event
Interface ConnectionOpenEvent

All Superinterfaces:
ConnectionEvent, Event

public interface ConnectionOpenEvent
extends ConnectionEvent

Server—answer to Connection.open().

This event must be handled by ConnectionListener.onConnectionOpen().

Field Summary

static int RESULT_ALREADY_LOGGED
Failure—code: user already logged.

static int RESULT _EXCEED_ SESSION
Failure—code: too much open sessions with the server.

static int RESULT_INVALID_AUTH_KEY
Failure—code: bad configuration key associated to the connection.

static int RESULT _INVALID_CLIENTID
Failure—code: bad client ID associated to the connection.

static int RESULT_INVALID PASSWORD
Failure—code: bad password associated to the connection.

static int RESULT_INVALID_PROFILE
Failure—code: invalid profile.

static int RESULT_INVALID_REVISION
Failure—code: bad application version associated to the connection.

static int RESULT_INVALID_SERVER_STATUS
Failure—code: the server is in a status (e.g. still in a start—up state) in which
connections are not allowed.

static int RESULT_INVALID_SERVICE
Failure—code: bad user type associated to the connection.

static int RESULT_INVALID_USERNAME
Failure—code: bad user name associated to the connection.

static int RESULT_INVALID _USERTYPE
Failure—code: bad user type associated to the connection.

160 it.list.jft.event Interface ConnectionOpenEvent

mailto:ftapi@list-group.com

it.list.jft.eventinterface ConnectionOpenEvent @ I.I ST

Fields inherited from interface Event
RESULT _GENERIC_ERROR, RESULT_OK

Method Summary

int | getActiveConnectionType()

int | getBusinessServicelD()
Returns the business service ID associated to this connection.

int | getClientServicelD()
Returns the client service ID associated to this connection.

int | getEnvironment()

int | getFTID()
Returns the FastTrack Server ID.

int]] getMarketRevision()
Returns the version of the server.

int | getSystemDate()
Returns the system date of the server.

Date |getSystemDateTime()
Returns the system date and time of the server.

int |getSystemTime()
Returns the system time of the server.

Methods inherited from interface ConnectionEvent

getConnection

Methods inherited from interface Event

getResult

Field Detall

RESULT _INVALID_PASSWORD
static final int RESULT_INVALID_PASSWORD
Failure—code: bad password associated to the connection.

See Also:
Constant Field Values

it.list.jft.eventinterface ConnectionOpenEvent 161

Returns an indication of the FastTrack server environment (e.g.: Production, Testing, etc.|.).

& I.I ST it.list.jft.eventinterface ConnectionOpenEvent

RESULT _INVALID_USERNAME
static final int RESULT_INVALID USERNAME
Failure—code: bad user name associated to the connection.

See Also:
Constant Field Values

RESULT _INVALID REVISION
static final int RESULT_INVALID_REVISION
Failure—code: bad application version associated to the connection.

See Also:
Constant Field Values

RESULT _ALREADY_LOGGED
static final int RESULT_ALREADY_LOGGED
Failure—code: user already logged.

See Also:
Constant Field Values

RESULT INVALID_CLIENTID
static final int RESULT_INVALID_CLIENTID
Failure—code: bad client ID associated to the connection.

See Also:
Constant Field Values

RESULT INVALID_SERVER_STATUS
static final int RESULT_INVALID_SERVER_STATUS
Failure—code: the server is in a status (e.g. still in a start—up state) in which connections are not allowed.

See Also:
Constant Field Values

162 it.list.jft.eventinterface ConnectionOpenEvent

it.list.jft.eventinterface ConnectionOpenEvent Q I.I ST

RESULT_EXCEED_SESSION
static final int RESULT_EXCEED_SESSION
Failure—code: too much open sessions with the server.

See Also:
Constant Field Values

RESULT _INVALID_ PROFILE
static final int RESULT_INVALID_PROFILE
Failure—code: invalid profile.

See Also:
Constant Field Values

RESULT INVALID _AUTH_KEY
static final int RESULT_INVALID_AUTH_KEY
Failure—code: bad configuration key associated to the connection.

See Also:
Constant Field Values

RESULT INVALID_USERTYPE
static final int RESULT_INVALID_USERTYPE
Failure—code: bad user type associated to the connection.

See Also:
Constant Field Values

RESULT INVALID_SERVICE
static final int RESULT_INVALID_SERVICE
Failure—code: bad user type associated to the connection.

See Also:
Constant Field Values

Method Detail

it.list.jft.eventinterface ConnectionOpenEvent 163

@ I.I ST it.list.jft.eventinterface ConnectionOpenEvent

getClientServicelD

int getClientServicelD()

Returns the client service ID associated to this connection.
The client service ID is one of the elements that identify a TransactionID.

This method must be called only when the result is Event. RESULT_OK.
Returns:

the client service ID associated to this connection.

-1 is returned when the result is not Event. RESULT _OK.
See Also:

TransactionID.belongsTo(it.list.jft. Connection)

getBusinessServicelD

int getBusinessServicelD()

Returns the business service ID associated to this connection.
The business service ID is one of the elements that identify a TransactionID.

This method must be called only when the result is Event. RESULT_OK.
Returns:

the business service ID associated to this connection.

-1 is returned when the result is not Event. RESULT _OK.
See Also:

TransactionID.belongsTo(it.list.jft. Connection)

getSystemDate

int getSystemDate()

Returns the system date of the server.
The value returned reflects the date in which the server opened the connection.

The returned value is an int whose decimal representation is: YYYYMMDD (i.e.: year*10000 + month*100
+ day).

This method must be called only when the result is Event. RESULT_OK.
Returns:

the system date of the server.

-1 is returned when the result is not Event. RESULT_OK.
See Also:

getSystemDateTime()

164

it.list.jft.eventinterface ConnectionOpenEvent

it.list.jft.eventinterface ConnectionOpenEvent Q I.I ST

getSystemTime
int getSystemTime()
Returns the system time of the server.
The value returned reflects the time in which the server opened the connection.

The returned value is an int whose decimal representation is: HHMMSScc (i.e.: hours*1000000 +
minutes*10000 + seconds*100 + hundreds).

This method must be called only when the result is Event. RESULT_OK.
Returns:

the system time of the server.

-1 is returned when the result is not Event. RESULT _OK.
See Also:

getSystemDateTime()

getSystemDateTime

Date getSystemDateTime()
Returns the system date and time of the server.
The value returned reflects the date and time in which the server opened the connection.
This method must be called only when the result is Event. RESULT_OK.

This utility method is defined in terms of getSystemDate() and getSystemTime() as follows:
int date = getSystemDate();
int time = getSystemTime();
if(date == -1 || time == -1)
return -1;
Calendar cal = Calendar.getinstance();
cal.set(date/10000, date%10000/100-1, date%100, time/1000000,
time%1000000/10000, time%1000/100);
return new Date(cal.getTimelnMillis() + time%100*10);
Returns:
the system date and time of the server.
-1 is returned when the result is not Event. RESULT _OK.

getMarketRevision
int[] getMarketRevision()
Returns the version of the server.

A version is always represented by a three—dimensional array; e.g. the version 2.0.3 is represented by:
int[] version = {2, 0, 3};

it.list.jft.eventinterface ConnectionOpenEvent 165

%

I.I ST it.list.jft.eventinterface ConnectionOpenEvent

This method must be called only when the result is Event. RESULT_OK.
Returns:

the version of the server.

null is returned when the result is not Event. RESULT_OK.

getFTID

int getFTID()

Returns the FastTrack Server ID.
Each FastTrack server in the world is identified by an unique FastTrack Server ID.

This method must be called only when the result is Event. RESULT_OK.
Returns:

the FastTrack Server ID.

-1 is returned when the result is not Event. RESULT_OK.

getEnvironment

int getEnvironment()

Returns an indication of the FastTrack server environment (e.g.: Production, Testing, etc...).

the precise meaning of this value depends on the particular FastTrack server and it is documented in the
corresponding manual.

This method must be called only when the result is Event. RESULT_OK.
Returns:

an indication of the FastTrack server environment.

-1 is returned when the result is not Event. RESULT_OK.

getActiveConnectionType

int getActiveConnectionType()

Submit a bug or feature to FT\API Programming Support

it.list.jft.event
Interface EntityClassQueryEvent

All Superinterfaces:

Event

public interface EntityClassQueryEvent
extends Event

166

it.list.jft.eventinterface ConnectionOpenEvent

mailto:ftapi@list-group.com

it.list.jft.eventinterface EntityClassQueryEvent

& LisT

Field Summary

static int RESULT_ENTITY_CLASS_NOT_AVAILABLE

Fields inherited from interface Event

RESULT_GENERIC_ERROR, RESULT_OK

Method Summary

EntityClass getEntityClass()
EntityClassQuery getEntityClassQuery()
boolean |isEnum()

Methods inherited from interface Event

getResult

Field Detall

RESULT_ENTITY_CLASS NOT_AVAILABLE

static final int RESULT_ENTITY_CLASS_NOT_AVAILABLE

See Also:
Constant Field Values

Method Detail

getEntityClassQuery

EntityClassQuery getEntityClassQuery()

it.list.jft.eventinterface EntityClassQueryEvent

167

b\ S it.list.jft.eventinterface EntityClassQueryEvent
& LIST

getEntityClass

EntityClass getEntityClass()

ISEnum

boolean isEnum()

Submit a bug or feature to FT\API Programming Support

it.list.jft.event
Interface FilterEvent

All Superinterfaces:
Event

All Known Subinterfaces:
FilterCreateEvent, FilterDestroyEvent, FilterSetEvent

public interface FilterEvent
extends Event

Generic event related to the Filter Lifecycle.

Events related to this super—interface must be handled by the methods of FilterListener.

Field Summary

Fields inherited from interface Event
RESULT_GENERIC _ERROR, RESULT_OK

Method Summary

Filter fgetFilter()
Returns the filter associated to this event.

Methods inherited from interface Event

getResult

168 it.list.jft.eventinterface EntityClassQueryEvent

mailto:ftapi@list-group.com

it.list.jft.eventinterface FilterEvent

& LisT

Method Detail

getFilter

Filter getFilter()

Returns the filter associated to this event.

Returns:

the filter associated to this event.
null is never returned.

Submit a bug or feature to FT\API Programming Support

it.list.jft.event

Interface FilterCreateEvent

All Superinterfaces:
Event, FilterEvent

public interface FilterCreateEvent

extends FilterEvent

Server—answer to Filter.create().

This event must be handled by FilterListener.onFilterCreate().

Field Summary
static int RESULT_FILTER_NOT_IMPLEMENTED
Failure—code: Filtering is not implemented by the server.
static int RESULT_INVALID_ENTITY_CLASS_ID
Failure—code: Entity Class ID is invalid.
static int RESULT_INVALID_FILTER_LEN
Failure—code: filter definition too long.
static int RESULT _INVALID_FILTER_TYPE
Failure—code: filter type is invalid.
static int RESULT_SYNTAX_ERROR
Failure—code: syntax error in filter definition.

Fields inherited from interface Event

RESULT_GENERIC_ERROR, RESULT_OK

it.list.jft.eventinterface FilterEvent

169

mailto:ftapi@list-group.com

& I.I ST it.list.jft.eventinterface FilterCreateEvent

Method Summary

int | getFilterID()

Methods inherited from interface FilterEvent

getFilter

Methods inherited from interface Event

getResult

Field Detall

RESULT _SYNTAX _ERROR
static final int RESULT_SYNTAX_ERROR
Failure—code: syntax error in filter definition.

The server is not able to understand the given filter definition.

See Also:
Constant Field Values

RESULT_INVALID_FILTER_LEN
static final int RESULT_INVALID_FILTER_LEN

Failure—code: filter definition too long.

See Also:
Constant Field Values

RESULT_INVALID_ENTITY_CLASS_ID
static final int RESULT_INVALID_ENTITY_CLASS_ID

Failure—code: Entity Class ID is invalid.

See Also:
Constant Field Values

170 it.list.jft.eventinterface FilterCreateEvent

it.list.jft.eventinterface FilterCreateEvent

RESULT _INVALID_FILTER_TYPE
static final int RESULT_INVALID_FILTER_TYPE
Failure—code: filter type is invalid.

See Also:
Constant Field Values

& LisT

RESULT_FILTER_NOT_IMPLEMENTED
static final int RESULT_FILTER_NOT_IMPLEMENTED
Failure—code: Filtering is not implemented by the server.

See Also:
Constant Field Values

Method Detail

getFilterID

int getFilterID()

Submit a bug or feature to FT\API Programming Support

it.list.jft.event
Interface FilterDestroyEvent

All Superinterfaces:
Event, FilterEvent

public interface FilterDestroyEvent
extends FilterEvent

Server—answer to Filter.destroy().

This event must be handled by FilterListener.onFilterDestroy().

Field Summary

it.list.jft.eventinterface FilterCreateEvent

171

mailto:ftapi@list-group.com

& I.I ST it.list.jft.event Interface FilterSetEvent

Fields inherited from interface Event
RESULT _GENERIC_ERROR, RESULT_OK

Method Summary

Methods inherited from interface FilterEvent

getFilter

Methods inherited from interface Event

getResult

Submit a bug or feature to FT\API Programming Support

it.list.jft.event
Interface FilterSetEvent

All Superinterfaces:
Event, FilterEvent

public interface FilterSetEvent
extends FilterEvent

Server—answer to Filter.set(java.lang.String).

This event must be handled by FilterListener.onFilterSet().

Field Summary

static int RESULT_ALREADY_SET
Failure—code: filter value already set.

static int RESULT_INVALID_FILTER_LEN
Failure—code: filter value too long.

static int RESULT_SYNTAX_ERROR
Failure—code: syntax error in filter value.

Fields inherited from interface Event
RESULT _GENERIC _ERROR, RESULT_OK

172 it.list.jft.event Interface FilterSetEvent

mailto:ftapi@list-group.com

it.list.jft.eventinterface FilterSetEvent

& LisT

Method Summary

Methods inherited from interface FilterEvent

getFilter

Methods inherited from interface Event

getResult

Field Detall

RESULT_SYNTAX_ERROR
static final int RESULT_SYNTAX_ERROR

Failure—code: syntax error in filter value.

The server is not able to understand the given filter value.

See Also:
Constant Field Values

RESULT INVALID_FILTER_LEN
static final int RESULT_INVALID_FILTER_LEN
Failure—code: filter value too long.

See Also:
Constant Field Values

RESULT_ALREADY_SET

static final int RESULT_ALREADY_SET
Failure—code: filter value already set.

See Also:
Constant Field Values

Submit a bug or feature to FT\API Programming Support

it.list.jft.eventinterface FilterSetEvent

173

mailto:ftapi@list-group.com

‘\-\ I.I ST it.list.jft.event Interface MulticastConnectionEvent

it.list.jft.event
Interface MulticastConnectionEvent

All Superinterfaces:
Event

public interface MulticastConnectionEvent
extends Event

Field Summary

Fields inherited from interface Event
RESULT_GENERIC_ERROR, RESULT_OK

Method Summary

int |getAction()

Entity |getEntity()

int |getKeylD()

MulticastConnection getMulticastConnection()

TimeStamp | getTimeStamp()

Methods inherited from interface Event

getResult

Method Detail

getMulticastConnection

MulticastConnection getMulticastConnection()

174 it.list.jft.event Interface MulticastConnectionEvent

it.list.jft.eventinterface MulticastConnectionEvent

getEntity

Entity getEntity()

& LisT

getAction

int getAction()

getKeylID

int getKeylID()

getTimeStamp

TimeStamp getTimeStamp()

Submit a bug or feature to FT\API Programming Support

it.list.jft.event
Interface QueryEvent

All Superinterfaces:
Event

All Known Subinterfaces:

QueryCreateEvent, QueryDestroyEvent, QueryNotifyEvent, QueryRowsEvent

public interface QueryEvent
extends Event

Generic event related to the Query Lifecycle.

Events related to this super—interface must be handled by the methods of QueryListener.

Field Summary

Fields inherited from interface Event

RESULT_GENERIC_ERROR, RESULT_OK

Method Summary

it.list.jft.eventinterface MulticastConnectionEvent

175

mailto:ftapi@list-group.com

& LI ST it.list.jft.eventinterface QueryEvent

Query [getQuery()
Returns the query associated to this event.

Methods inherited from interface Event

getResult

Method Detall

getQuery
Query getQuery()

Returns the query associated to this event.
Returns:
the query associated to this event.
null is never returned.

Submit a bug or feature to FT\API Programming Support

it.list.jft.event
Interface QueryCreateEvent

All Superinterfaces:
Event, QueryEvent

public interface QueryCreateEvent
extends QueryEvent

Server—answer to Query.create().

This event must be handled by QueryListener.onQueryCreate().

Field Summary

static int RESULT_BAD_PARAMETERS
Failure—code: bad parameter associated to the query.

static int RESULT_WRONG_QUERY_ID
Failure—code: bad QuerylID associated to the query.

176 it.list.jft.eventinterface QueryEvent

mailto:ftapi@list-group.com

it.list.jft.eventinterface QueryCreateEvent @ I.I ST

Fields inherited from interface Event
RESULT _GENERIC_ERROR, RESULT_OK

Method Summary

int |getNumRows()
Returns the number of rows in the result-set as computed by the server.

int |getTimeToLive()
Returns the interval time (in seconds) during which the server cache the result-set.

boolean [resultSetFollows()
Returns the indication that the result-set is immediately available.

Methods inherited from interface QueryEvent

getQuery

Methods inherited from interface Event

getResult

Field Detall

RESULT _BAD_PARAMETERS
static final int RESULT_BAD_PARAMETERS
Failure—code: bad parameter associated to the query.
The server is not able to process the query with the given parameter.

See Also:
Constant Field Values

RESULT WRONG_QUERY_ID
static final int RESULT_WRONG_QUERY_ID
Failure—code: bad QuerylD associated to the query.
The server is not able to process the query with the given QuerylID.

See Also:
Constant Field Values

it.list.jft.eventinterface QueryCreateEvent 177

@ I.I ST it.list.jft.eventinterface QueryCreateEvent

Method Detail

getNumRows

int getNumRows()

Returns the number of rows in the result—set as computed by the server.

If the server does not known this number then -1 is returned: e.g. when resultSetFollows() returns
false.

This method must be called only when the result is Event. RESULT_OK.

Returns:
number of rows in the result—set: N >= 0 means that the result—-set contains N elements.
-1 is returned when the server is unable to compute this number, or
when the result is not Event.RESULT_OK.

getTimeToLive

int getTimeToLive()

Returns the interval time (in seconds) during which the server cache the result-set.

During this interval the client may issue Query.queryRows() invocations to obtains the various parts of

the result-set.
The value returned is meaningfull only if resultSetFollows() returns false.

If the server does not known this interval then zero is returned: e.g. when resultSetFollows() returns
true.

This method must be called only when the result is Event. RESULT_OK.
Returns:
number of seconds during which the server cache the result-set.
Zero is returned when the interval is not known, or
when the resultSetFollows() is true, or
when the result is not Event. RESULT_OK.

resultSetFollows

boolean resultSetFollows()

178

Returns the indication that the result-set is immediately available.
true means that QueryListener.onQueryNotify() will be automatically called N+1 times:
0 N>=0 times (with the EOQ indication equals to false) for each of the N rows in the result-set;
¢ + 1 additional time (with the EOQ indication equals to true) to indicate the end of the result-set.

false means that QueryListener.onQueryNotify() will not be automatically called (as result of
Query.create()) and the client must issue a specific Query.queryRows() to obtains a subset of the

it.list.jft.eventinterface QueryCreateEvent

it.list.jft.event Interface QueryDestroyEvent

result—set.

This method must be called only when the result is Event. RESULT_OK.

Returns:
indication regarding the immediate availability of the result—set.
false is returned when result is not Event. RESULT_OK.

& LisT

Submit a bug or feature to FT\API Programming Support

it.list.jft.event
Interface QueryDestroyEvent

All Superinterfaces:
Event, QueryEvent

public interface QueryDestroyEvent
extends QueryEvent

Server—answer to Query.destroy().

This event must be handled by QueryListener.onQueryDestroy().

Field Summary

Fields inherited from interface Event

RESULT_GENERIC_ERROR, RESULT_OK

Method Summary

Methods inherited from interface QueryEvent

getQuery

Methods inherited from interface Event

getResult

Submit a bug or feature to FT\API Programming Support

it.list.jft.event Interface QueryDestroyEvent

179

mailto:ftapi@list-group.com
mailto:ftapi@list-group.com

& I.I ST it.list.jft.event Interface QueryNotifyEvent

it.list.jft.event
Interface QueryNotifyEvent

All Superinterfaces:
Event, QueryEvent

public interface QueryNotifyEvent
extends QueryEvent

Event generated when a single entity (or the EOQ indication) of a query result-set is available.
This event must be handled by QueryListener.onQueryNotify().

With this event the server result is always Event. RESULT_OK.

Field Summary

static int ACTION_ENTITY_ADD
Action—code: entity is on the server.

static int ACTION_ENTITY_DEL
Action—code: entity logically removed on the server.

Fields inherited from interface Event
RESULT _GENERIC_ERROR, RESULT_OK

Method Summary

int | getAction()
Returns the server action associated with the entity available on this event.

Entity | getEntity()
Returns the entity of the current row in the result-set.

boolean |getEOQ()
Returns the indication that the result—set is ended.

int | getRowNumber()
Returns the index (1-based) of the current row in the result-set.

TimeStamp |getTimeStamp()
Returns the entity timestamp.

Methods inherited from interface QueryEvent

getQuery

Methods inherited from interface Event

180 it.list.jft.event Interface QueryNotifyEvent

it.list.jft.eventinterface QueryNotifyEvent Q I.I ST

getResult

Field Detall

ACTION_ENTITY_ADD
static final int ACTION_ENTITY_ADD
Action—code: entity is on the server.
This value may be returned by getAction().

See Also:
Constant Field Values

ACTION_ENTITY_DEL

static final int ACTION_ENTITY_DEL
Action—code: entity logically removed on the server.
This value may be returned by getAction().

See Also:
Constant Field Values

Method Detail

getRowNumber
int getRowNumber()
Returns the index (1-based) of the current row in the result—set.

The index of the first row of a result—set returned by Query.create() is 1.
The index of the first row of a result—set returned by Query.queryRows() is firstRow.

This method must be called only when the EOQ indication is false.
Returns:
the index (1-based) of the current row in the result-set.
Zero is returned when the EOQ indication is true
or when the information is not available (some primitives FastTrack services always return zero for
every rows of the returned result-set).

it.list.jft.eventinterface QueryNotifyEvent 181

& I.I ST it.list.jft.eventinterface QueryNotifyEvent

getTimeStamp

TimeStamp getTimeStamp()

Returns the entity timestamp.

This method must be called only when the EOQ indication is false.
Returns:
the entity timestamp.
null is returned when the EOQ indication is true or if entity timestamp is not sent by the server.

getEntity

Entity

getEntity()
Returns the entity of the current row in the result-set.

This method must be called only when the EOQ indication is false.
Returns:

the entity of the current row in the result-set.

null is returned when the EOQ indication is true.

getAction

int getAction()

Returns the server action associated with the entity available on this event.

The possible returned values are described in the Field Summary section.
Returns:
the server action associated with the entity available on this event if the Entity is not null.

getEOQ

boolean getEOQ()

Returns the indication that the result—set is ended.

If the query result-set computed by the server, as an aswer to a correct Query.create() or
Query.queryRows(), is composed by N entities then the QueryListener.onQueryNotify()
method (with a QueryNotifyEvent as parameter) will be invoked N+1 times: N times with each of the N
entities (and this EOQ indication equals to false) and one more time with this EOQ indication equals to
true.
Returns:

the indication that the result-set is ended.

Submit a bug or feature to FT\API Programming Support

182

it.list.jft.eventinterface QueryNotifyEvent

mailto:ftapi@list-group.com

it.list.jft.event Interface QueryRowsEvent & I.I ST

it.list.jft.event
Interface QueryRowsEvent

All Superinterfaces:
Event, QueryEvent

public interface QueryRowsEvent
extends QueryEvent

Server—answer to Query.queryRows().

This event must be handled by QueryListener.onQueryRows().

Field Summary

static int RESULT_WRONG_FIRST_ROW
Failure—code: bad firstRow parameter of Query.queryRows().

static int RESULT_WRONG_ROW_NUMBER
Failure—code: bad rowNumber parameter of Query.queryRows().

Fields inherited from interface Event
RESULT_GENERIC_ERROR, RESULT_OK

Method Summary

Methods inherited from interface QueryEvent

getQuery

Methods inherited from interface Event

getResult

Field Detall

RESULT WRONG_FIRST ROW
static final int RESULT_WRONG_FIRST_ROW

Failure—code: bad firstRow parameter of Query.queryRows().

it.list.jft.event Interface QueryRowsEvent 183

& I.I ST it.list.jft.eventinterface QueryRowsEvent

See Also:
Constant Field Values

RESULT _WRONG_ROW_NUMBER
static final int RESULT_WRONG_ROW_NUMBER
Failure—code: bad rowNumber parameter of Query.queryRows().

See Also:
Constant Field Values

Submit a bug or feature to FT\API Programming Support

it.list.jft.event
Interface SubscriptionEvent

All Superinterfaces:
Event

All Known Subinterfaces:
SubscriptionldleEvent, SubscriptionNotifyEvent, SubscriptionStartEvent, SubscriptionStopEvent

public interface SubscriptionEvent
extends Event

Generic event related to the Subscription Lifecycle.

Events related to this super—interface must be handled by the methods of SubscriptionListener.

Field Summary

Fields inherited from interface Event
RESULT _GENERIC_ERROR, RESULT_OK

Method Summary

Subscription getSubscription()
Returns the subscription associated to this event.

Methods inherited from interface Event

getResult

184 it.list.jft.eventinterface QueryRowsEvent

mailto:ftapi@list-group.com

it.list.jft.eventinterface SubscriptionEvent

& LisT

Method Detail

getSubscription
Subscription getSubscription()

Returns the subscription associated to this event.
Returns:
the subscription associated to this event.
null is never returned.

Submit a bug or feature to FT\API Programming Support

it.list.jft.event
Interface SubscriptionldleEvent

All Superinterfaces:
Event, SubscriptionEvent

public interface SubscriptionldleEvent
extends SubscriptionEvent

Event generated when the flow of historical data is finished and the start of actual data is starting.

This event is generated only if the type of query of the subscription is not
SubscriptionParam.QUERY_TYPE_ON_TIME.

This event must be handled by SubscriptionListener.onSubscriptionldle().

Field Summary

Fields inherited from interface Event

RESULT_GENERIC_ERROR, RESULT_OK

Method Summary

Methods inherited from interface SubscriptionEvent

it.list.jft.eventinterface SubscriptionEvent

185

mailto:ftapi@list-group.com

B\ S it.list.jft.event Interface SubscriptionNotifyEvent
O LIST

getSubscription

Methods inherited from interface Event

getResult

Submit a bug or feature to FT\API Programming Support

it.list.jft.event
Interface SubscriptionNotifyEvent

All Superinterfaces:
Event, SubscriptionEvent

public interface SubscriptionNotifyEvent
extends SubscriptionEvent

Event generated when an actual or historical data or a server—answer to Subscription.refreshEntity() is
available.

This event must be handled by SubscriptionListener.onSubscriptionNotify().

With this event the server result is always Event. RESULT_OK.

Field Summary

static int ACTION_ENTITY_ADD
Action—code: entity added on the server, or just returned as an answer to
Subscription.refreshEntity().

static int ACTION_ENTITY_DEL
Action—code: entity logically removed on the server.

static int ACTION_ENTITY_KIL
Action—code: entity physically removed on the server.

static int ACTION_ENTITY_RWT
Action—code: entity rewritten on the server.

Fields inherited from interface Event
RESULT _GENERIC_ERROR, RESULT_OK

Method Summary

int |

186 it.list.jft.event Interface SubscriptionNotifyEvent

mailto:ftapi@list-group.com

it.list.jft.eventinterface SubscriptionNotifyEvent -\ S
O LIST

getAction()
Returns the server action associated with the entity available on this event.

Entity [getEntity()
Returns the entity available on this event.
int [getKeylD()
Returns the index of the key on the basis of which the server has carried out getAction().

TimeStamp | getTimeStamp()
Returns the timestamp associated with the entity available on this event.

boolean |isMasked()
Returns the indication that some fields of getEntity() may be missings.

Methods inherited from interface SubscriptionEvent

getSubscription

Methods inherited from interface Event

getResult

Field Detall

ACTION_ENTITY_ADD

static final int ACTION_ENTITY_ADD

Action—code: entity added on the server, or just returned as an answer to
Subscription.refreshEntity().

Historical data are always tagged as ACTION_ENTITY_ADD.
This value may be returned by getAction().

See Also:
Constant Field Values

ACTION_ENTITY_DEL
static final int ACTION_ENTITY_DEL
Action—code: entity logically removed on the server.

In this case the Entity returned by getEntity() is generally undefined on any fields apart from those
associated with getKeyID().

Historical data are never tagged as ACTION_ENTITY_DEL.

it.list.jft.eventinterface SubscriptionNotifyEvent 187

B\ S it.list.jft.eventinterface SubscriptionNotifyEvent
& LIST

This value may be returned by getAction().

See Also:
Constant Field Values

ACTION_ENTITY_RWT

static final int ACTION_ENTITY_RWT
Action—code: entity rewritten on the server.
Historical data are never tagged as ACTION_ENTITY_RWT.
This value may be returned by getAction().

See Also:
Constant Field Values

ACTION_ENTITY_KIL
static final int ACTION_ENTITY_KIL
Action—code: entity physically removed on the server.

Every time there is an ACTION_ENTITY_KIL the server EntityClass version changed. This new version is
available in getTimeStamp().getDateTime() and it's different from both the initially subscribed
EntityClass version and the initially required EntityClass version.

If getKeylID() > 0O,
then

¢ the Entity returned by getEntity() is generally undefined on any fields apart from those
associated with getKeyID()

otherwise (getKeyID() <= 0)
¢ all entities are physically removed from the server, and
O getEntity() returns null.

Historical data are never tagged as ACTION_ENTITY_KIL.

This value may be returned by getAction().

See Also:
Constant Field Values

Method Detail

188 it.list.jft.eventinterface SubscriptionNotifyEvent

it.list.jft.eventinterface SubscriptionNotifyEvent -\ S
O LIST

getAction

int getAction()
Returns the server action associated with the entity available on this event.
The possible returned values are described in the Field Summary section.

If this event is the server—answer to a Subscription.refreshEntity() the value
ACTION_ENTITY_ADD is returned.

Returns:
the server action associated with the entity available on this event.

getTimeStamp
TimeStamp getTimeStamp()

Returns the timestamp associated with the entity available on this event.

Returns:
the timestamp associated with the entity available on this event.

null is never returned.

getEntity
Entity getEntity()

Returns the entity available on this event.

If getkeyID() <=0
then

¢ all entities are physically removed from the server,
¢ this method returns null,

else
¢ if getAction() is ACTION_ENTITY_DEL or ACTION_ENTITY_KIL

(the Entity returned by this method is generally undefined on any fields apart from those
associated with getKeylD(),

else
{if this event refers a masked subscriptions and it is not an answer to a
Subscription.refreshEntity()
then
* isMasked() returns true,
« the Entity returned by this method is generally undefined on any fields apart from

those associated with the mask,

else
* isMasked() returns false,
« all the fields of the Entity returned by this method are meaningful.

it.list.jft.eventinterface SubscriptionNotifyEvent 189

B\ S it.list.jft.eventinterface SubscriptionNotifyEvent
& LIST

Returns:
the entity available on this event.
null is returned when getKeyID() <= 0.

getKeylID
int getKeylID()
Returns the index of the key on the basis of which the server has carried out getAction().

For ACTION_ENTITY_DEL and ACTION_ENTITY_KIL this value determines which field are available in
getEntity().
Returns:
the index of the key on the basis of which the server has carried out getAction().
See Also:
getEntity()

isMasked

boolean isMasked()
Returns the indication that some fields of getEntity() may be missings.

For ACTION_ENTITY_ADD and ACTION_ENTITY_RWT this value determines which field are available in
getEntity().

true is returned when this event refers a masked subscriptions and it is not an answer to a
Subscription.refreshEntity().

In this case the Entity returned by getEntity() is generally undefined on any fields apart from those
associated with the mask.

false is returned when this event refers a not masked subscriptions or it is an answer to a
Subscription.refreshEntity().
In this case all fields of the Entity returned by getEntity() are meaningful.

Please note that the behaviour of this method does not depends on the values
(SubscriptionParam.SUBSCRIBE_MASKED_FLOW_ALL and
SubscriptionParam.SUBSCRIBE_MASKED FLOW_LAST) given to
SubscriptionParam.setFlow().
Returns:

the indication that some fields of getEntity() may be missings.

The return value is undefined for ACTION_ENTITY_DEL and ACTION_ENTITY_KIL.
See Also:

getEntity()

Submit a bug or feature to FT\API Programming Support

190 it.list.jft.eventinterface SubscriptionNotifyEvent

mailto:ftapi@list-group.com

it.list.jft.event Interface SubscriptionStartEvent -\
O LIST

it.list.jft.event
Interface SubscriptionStartEvent

All Superinterfaces:
Event, SubscriptionEvent

public interface SubscriptionStartEvent
extends SubscriptionEvent

Server—answer to Subscription.start().

This event must be handled by SubscriptionListener.onSubscriptionStart().

Field Summary

Fields inherited from interface Event
RESULT _GENERIC_ERROR, RESULT_OK

Method Summary

int | getEntityClassVersionOnServer()
Returns the version of EntityClass on the server.

boolean |isEntityClassReset()
Returns a reset—class indication.

Methods inherited from interface SubscriptionEvent

getSubscription

Methods inherited from interface Event

getResult

Method Detail

ISEntityClassReset
boolean isEntityClassReset()

Returns a reset—class indication.

it.list.jft.event Interface SubscriptionStartEvent 191

B\ S it.list.jft.eventinterface SubscriptionStartEvent
O LIST

A true indicates that the required EntityClass version is different from the server EntityClass
version. In this case the historical data that will be available into the next
SubscriptionNotifyEvents are complete and not (as usual) restricted to data following a given
timestamp.

This method must be called only when the result is Event. RESULT_OK.
Returns:
the indication whether a download is needed on all the entities.
false is returned when the result is not Event. RESULT_OK.

getEntityClassVersionOnServer
int getEntityClassVersionOnServer()
Returns the version of EntityClass on the server.

The returned value may be different from the version requested into the Subscription parameter. In this case
isEntityClassReset() returns true.

This method must be called only when the server result is Event. RESULT_OK.
Returns:

the version of EntityClass on the server.

-1 is returned when the result is not Event. RESULT_OK.
See Also:

isEntityClassReset()

Submit a bug or feature to FT\API Programming Support

it.list.jft.event
Interface SubscriptionStopEvent

All Superinterfaces:
Event, SubscriptionEvent

public interface SubscriptionStopEvent
extends SubscriptionEvent

Server—answer to Subscription.stop().

This event must be handled by SubscriptionListener.onSubscriptionStop().

Field Summary

192 it.list.jft.eventinterface SubscriptionStartEvent

mailto:ftapi@list-group.com

it.list.jft.event Interface TransactionEvent Q I.I ST

Fields inherited from interface Event
RESULT _GENERIC_ERROR, RESULT_OK

Method Summary

Methods inherited from interface SubscriptionEvent

getSubscription

Methods inherited from interface Event

getResult

Submit a bug or feature to FT\API Programming Support

it.list.jft.event
Interface TransactionEvent

All Superinterfaces:
Event

All Known Subinterfaces:
TransactionQueryEvent, TransactionSendEvent

public interface TransactionEvent
extends Event

Generic event related to the Transaction Lifecycle.
Events related to this super-interface must be handled by the methods of TransactionListener.

With this event the server result is never Event. RESULT_OK.

Field Summary

static int RESULT_ABORTED
Failure—code: transaction was aborted by the server.

static int RESULT_COMMITTED
Failure—code: transaction was commited by the server.

static int RESULT_FLYING
Failure—code: transaction is flying.

static int RESULT_INVALID _TRANSACTION_ID
Failure—code: transaction is not valid because an invalid Transaction ID was used.

it.list.jft.event Interface TransactionEvent 193

mailto:ftapi@list-group.com

@ I.I ST it.list.jft.eventinterface TransactionEvent

Fields inherited from interface Event
RESULT _GENERIC_ERROR, RESULT_OK

Method Summary

Entity [getEntity()
Returns the result entity associated to this event.

int |getReasonCode()
Returns the specific market-related reason about the transaction abort.

TimeStamp |getTimeStamp()
Returns the result timestamp.

Transaction | getTransaction()
Returns the transaction associated to this event.

Methods inherited from interface Event

getResult

Field Detall

RESULT _ABORTED
static final int RESULT_ABORTED
Failure—code: transaction was aborted by the server.
In this case getReasonCode() may be used to understand why the market aborted the transaction.

See Also:
Constant Field Values

RESULT _COMMITTED
static final int RESULT_COMMITTED
Failure—code: transaction was commited by the server.

See Also:
Constant Field Values

194 it.list.jft.eventinterface TransactionEvent

it.list.jft.eventinterface TransactionEvent Q I.I ST

RESULT_FLYING
static final int RESULT_FLYING
Failure—code: transaction is flying.

See Also:
Constant Field Values

RESULT_INVALID_TRANSACTION_ID
static final int RESULT_INVALID_TRANSACTION_ID

Failure—code: transaction is not valid because an invalid Transaction ID was used.

See Also:
Constant Field Values

Method Detail

getTransaction
Transaction getTransaction()

Returns the transaction associated to this event.
Returns:
the transaction associated to this event.
null is never returned.

getTimeStamp
TimeStamp getTimeStamp()
Returns the result timestamp.

This method must be called only when the result is Event. RESULT_OK or when this event is instanceof
TransactionQueryEvent.
Returns:
the result timestamp.
null is returned when the result is not Event.RESULT_OK and this event is not instanceof
TransactionQueryEvent.

getEntity
Entity getEntity()

Returns the result entity associated to this event.

it.list.jft.eventinterface TransactionEvent 195

%

I.I ST it.list.jft.eventinterface TransactionEvent

This method must be called only when the result is Event. RESULT_OK or when this event is instanceof
TransactionQueryEvent.
Returns:

the result entity associated to this event.

null is returned when the result entity was not required, or

when the server choose to not send the result, or

the result is not Event.RESULT_OK and this event is not instanceof

TransactionQueryEvent.

getReasonCode

int getReasonCode()

Returns the specific market-related reason about the transaction abort.
This method must be called only when the result is RESULT_ABORTED.

The exact meaning of the result depends on the specific market server and it is documented in the
correspondig market server manual, apart from the following generic values:

¢ 10000: internal error

¢ 10001: not logged

¢ 10002: inadequate privileges

¢ 10003: invalid request action

¢ 10004: invalid Transaction ID

Returns:

the specific market-related reason about the transaction abort.
Zero is returned when the result is not RESULT_ABORTED.

Submit a bug or feature to FT\API Programming Support

it.list.jft.event
Interface TransactionQueryEvent

All Superinterfaces:

Event, TransactionEvent

public interface TransactionQueryEvent
extends TransactionEvent

Server—answer to Transaction.query().

This event must be handled by TransactionListener.onTransactionQuery().

With this event the server result is never Event. RESULT_OK.

196

it.list.jft.eventinterface TransactionEvent

mailto:ftapi@list-group.com

it.list.jft.event Interface TransactionSendEvent & I.I ST

Field Summary

Fields inherited from interface TransactionEvent
RESULT_ABORTED, RESULT_COMMITTED, RESULT_FLYING, RESULT INVALID_TRANSACTION_ID

Fields inherited from interface Event
RESULT _GENERIC _ERROR, RESULT_OK

Method Summary

Methods inherited from interface TransactionEvent

getEntity, getReasonCode, getTimeStamp, getTransaction

Methods inherited from interface Event

getResult

Submit a bug or feature to FT\API Programming Support

it.list.jft.event
Interface TransactionSendEvent

All Superinterfaces:
Event, TransactionEvent

public interface TransactionSendEvent
extends TransactionEvent

Server—answer to Transaction.send().
This event must be handled by TransactionListener.onTransactionSend().

With this event the server result is never Event. RESULT_OK.

Field Summary

Fields inherited from interface TransactionEvent

it.list.jft.event Interface TransactionSendEvent 197

mailto:ftapi@list-group.com

& LI ST it.list.jft.event Interface Listener

RESULT_ABORTED, RESULT_COMMITTED, RESULT_FLYING, RESULT_INVALID_TRANSACTION_ID

Fields inherited from interface Event
RESULT_GENERIC_ERROR, RESULT_OK

Method Summary

Methods inherited from interface TransactionEvent

getEntity, getReasonCode, getTimeStamp, getTransaction

Methods inherited from interface Event

getResult

Submit a bug or feature to FT\API Programming Support

it.list.jft.event
Interface Listener
All Known Subinterfaces:

ConnectionListener, EntityClassQueryListener, FilterListener, MulticastConnectionListener, QueryListener,
SubscriptionListener, TransactionListener

public interface Listener
Super-interface common to all listener interfaces.

Listener interfaces must be implemented in order to handle the lifecycle of the various CommunicationLifeCycle
objects (Connection, Filter, Query, Subscription, Transaction).

These subinterfaces are bound to the communication objects creation (through the various makeSomething
methods in Context) and then they may be retrieved by CommunicationLifeCycle.getListener().

If an exception is thrown and not catch inside a Listener method then the behavior of the application is controlled by
JFT.setExitOnListenerException(boolean) method.

Submit a bug or feature to FT\API Programming Support

it.list.jft.event
Interface ConnectionListener

All Superinterfaces:

198 it.list.jft.event Interface Listener

mailto:ftapi@list-group.com
mailto:ftapi@list-group.com

it.list.jft.eventinterface ConnectionListener @ I.I ST

Listener

public interface ConnectionListener
extends Listener

Interface to be implemented in order to handle the Connection Lifecycle.

This interface is bound to connections created by Context.makeConnection().
It may be retrieved by CommunicationLifeCycle.getListener().

Method Summary

void |onConnectionClose(ConnectionCloseEvent event)
Called when the server—answer to the Connection.close() is available.

void |onConnectionLost(ConnectionLostEvent event)
Called when the connection with server crashed or when the server choose to terminate the

connection.

void |onConnectionOpen(ConnectionOpenEvent event)

Called when the server—answer to the Connection.open() is available.

Method Detail

onConnectionOpen

void onConnectionOpen(ConnectionOpenEvent event)

Called when the server—answer to the Connection.open() is available.

If the server result is Event. RESULT _OK,
then

O the server has accepted the connection creation.

¢ the connection status has changed to Connection.STATUS_CONNECTED.

¢ the server may now accept subscriptions, queries, filters or transactions.
otherwise

O the server has rejected the connection (see the various ConnectionOpenEvent result codes to
understand why).
¢ the connection status has changed to Connection.STATUS_DISCONNECTED.
O the server does not accept any subscriptions, queries, filters or transactions on this Connection.
In the latter case it is a good practice to release the connection associated to the event parameter.
Parameters:
event — the server—answer to the Connection.open()

it.list.jft.eventinterface ConnectionListener 199

& I.I ST it.list.jft.eventinterface ConnectionListener

onConnectionClose

void onConnectionClose(ConnectionCloseEvent event)

Called when the server—answer to the Connection.close() is available.

If the server result is Event. RESULT _OK, then the server has closed the connection otherwise some
unknow error occured.

In both cases:

O the server does not accept any subscriptions, queries, filters or transactions on this Connection.
¢ the connection status has changed to Connection.STATUS_DISCONNECTED.
¢ it is a good practice to release the connection associated to the event parameter.
It is guaranteed that only one method between onConnectionClose and onConnectionLost will ever
be called on the same Listener.
Parameters:
event — the server—answer to the Connection.close()

onConnectionLost

void onConnectionLost(ConnectionLostEvent event)

Called when the connection with server crashed or when the server choose to terminate the connection.
In this case:

O the server result is always Event. RESULT_GENERIC_ERROR.
¢ the connection status has changed to Connection.STATUS DISCONNECTED.
O the server does not accept any subscriptions, queries, filters or transactions on this Connection.
¢ it is a good practice to release the connection associated to the event parameter.
It is guaranteed that only one method between onConnectionClose and onConnectionLost will ever
be called on the same Listener.
Parameters:
event — the description of this closure

Submit a bug or feature to FT\API Programming Support

it.list.jft.event
Interface EntityClassQueryListener

All Superinterfaces:

Listener

public interface EntityClassQueryListener
extends Listener

200

it.list.jft.eventinterface ConnectionListener

mailto:ftapi@list-group.com

it.list.jft.eventinterface EntityClassQueryListener -\ S
O LIST

Method Summary

void | onEntityClassQuery(EntityClassQueryEvent event)

Method Detail

onEntityClassQuery

void onEntityClassQuery(EntityClassQueryEvent event)

Submit a bug or feature to FT\API Programming Support

it.list.jft.event
Interface FilterListener

All Superinterfaces:
Listener

public interface FilterListener
extends Listener

Interface to be implemented in order to handle the Filter Lifecycle.

This interface is bound to filters created by Context.makeFilter().
It may be retrieved by CommunicationLifeCycle.getListener().

Method Summary

void |onFilterCreate(FilterCreateEvent event)
Called when the server—answer to the Filter.create() is available.

void | onFilterDestroy(FilterDestroyEvent event)
Called when the server—answer to the Filter.destroy() is available.

void | onFilterSet(FilterSetEvent event)
Called when the server—answer to the Filter.set(java.lang.String) is available.

Method Detail

it.list.jft.eventinterface EntityClassQueryListener 201

mailto:ftapi@list-group.com

@ I.I ST it.list.jft.eventinterface FilterListener

onFilterCreate
void onFilterCreate(FilterCreateEvent event)
Called when the server—answer to the Filter.create() is available.

If the server result is Event. RESULT _OK,
then

O the server has accepted the filter creation.

O the filter status has changed to Filter. STATUS_CREATED.

¢ the server may now accept Filter.set(java.lang.String) on this filter.

0 the server may now accept subscriptions based on this filter.
otherwise

¢ the server has rejected the filter creation (see the various FilterCreateEvent result codes to understa
why).
O the filter status has changed to Filter. STATUS_DESTROYED.
¢ the server does not accept any Filter.set(java.lang.String) on this filter.
O the server does not accept any subscription based on this filter.
In the latter case it is a good practice to release the filter associated to the event parameter.
Parameters:
event — the server—answer to the Filter.create()

onFilterSet
void onFilterSet(FilterSetEvent event)
Called when the server—answer to the Filter.set(java.lang.String) is available.

If the server result is Event. RESULT_OK then the server has accepted the filter setting otherwise some errc
occurred (see the various FilterSetEvent result codes to understand why).

In both cases:
« the filter status remains unchanged (the most of cases it remains Filter. STATUS_CREATED).
« the server may now accept subscriptions based on this filter.
Parameters:
event — the server—answer to the Filter.set(java.lang.String)

onFilterDestroy
void onFilterDestroy(FilterDestroyEvent event)
Called when the server—answer to the Filter.destroy() is available.

If the server result is Event. RESULT_OK, then the server has destroyed the filter otherwise some unknow
error occured.

In both cases:

202 it.list.jft.eventinterface FilterListener

it.list.jft.event Interface MulticastConnectionListener

O the server does not accept any other operation on this filter.
O the filter status has changed to Filter. STATUS_DESTROYED.
¢ it is a good practice to release the filter associated to the event parameter.
Parameters:
event — the server—answer to the Filter.destroy()

& LisT

Submit a bug or feature to FT\API Programming Support

it.list.jft.event
Interface MulticastConnectionListener

All Superinterfaces:
Listener

public interface MulticastConnectionListener
extends Listener

Method Summary

void | onMulticastConnection(MulticastConnectionEvent event)

Method Detail

onMulticastConnection

void onMulticastConnection(MulticastConnectionEvent event)

Submit a bug or feature to FT\API Programming Support

it.list.jft.event
Interface QueryListener

All Superinterfaces:
Listener

public interface QueryListener
extends Listener

Interface to be implemented in order to handle the Query Lifecycle.

it.list.jft.event Interface MulticastConnectionListener

203

mailto:ftapi@list-group.com
mailto:ftapi@list-group.com

=

I.I ST it.list.jft.eventinterface QueryListener

This interface is bound to queries created by Context.makeQuery().
It may be retrieved by CommunicationLifeCycle.getListener().

Method Summary

void |onQueryCreate(QueryCreateEvent event)
Called when the server—answer to the Query.create() is available.

void | onQueryDestroy(QueryDestroyEvent event)
Called when the server—answer to the Query.destroy() is available.

void | onQueryNotify(QueryNotifyEvent event)
Called when an entity of a query result-set is available.

void | onQueryRows(QueryRowsEvent event)
Called when the server—answer to the Query.queryRows() is available.

Method Detail

onQueryCreate

void onQueryCreate(QueryCreateEvent event)

Called when the server—answer to the Query.create() is available.

If the server result is Event. RESULT_OK,
then

¢ the server has accepted the query creation.
¢ the query status has changed to Query.STATUS_CREATED.
¢ if QueryCreateEvent.resultSetFollows() is true then the server starts to send
QueryNotifyEvent events to notify the query result.
¢ if QueryCreateEvent.resultSetFollows() is false then the server may now accept
Query.QueryRows() on this query.
otherwise

¢ the server has rejected the query creation (see the various QueryCreateEvent result codes to
understand why).
¢ the query status has changed to Query.STATUS _DESTROYED.
¢ the server does not accept any Query.QueryRows on this query.
¢ the server does not send any QueryNotifyEvent events to notify the query result.
In the latter case it is a good practice to release the query associated to the event parameter.
Parameters:
event — the server—answer to the Query.create()

204

it.list.jft.eventinterface QueryListener

it.list.jft.eventinterface QueryListener @ I.I ST

onQueryRows
void onQueryRows(QueryRowsEvent event)
Called when the server—answer to the Query.queryRows() is available.

If the server result is Event. RESULT _OK,
then

0 the server has accepted the query request.
O the server starts to send QueryNotifyEvent events to notify the query result.
otherwise

O the server has rejected the query request (see the various QueryRowsEvent result codes to underst:
why).

O the server does not send any QueryNotifyEvent events to notify the query result.

In both cases the query status remains Query.STATUS_CREATED.
Parameters:
event — the server—answer to the Query.queryRows()

onQueryNotify
void onQueryNotify(QueryNotifyEvent event)
Called when an entity of a query result-set is available.

If the query result-set computed by the server, as an aswer to a correct Query.create() or
Query.queryRows(), is composed by N entities then this method will be invoked (N+1) times: N times
with each of the N entities and one more time with the EOQ indication.

In any case:

¢ the server result is always Event. RESULT_OK.

O the query status remains Query.STATUS_CREATED.

0 the data is available through the various QueryNotifyEvent methods
Parameters:

event — event containing an entity of the query result-set or the EOQ indication.

onQueryDestroy
void onQueryDestroy(QueryDestroyEvent event)
Called when the server—answer to the Query.destroy() is available.

If the server result is Event. RESULT_OK, then the server has destroyed the query otherwise some unknow
error occured.

In both cases:

it.list.jft.eventinterface QueryListener 205

& I.I ST it.list.jft.event Interface SubscriptionListener

O the server does not accept any other operation on this query.
0 the query status has changed to Query.STATUS_DESTROYED.
¢ it is a good practice to release the query associated to the event parameter.
Parameters:
event — the server—answer to the Query.destroy()

Submit a bug or feature to FT\API Programming Support

it.list.jft.event
Interface SubscriptionListener

All Superinterfaces:
Listener

public interface SubscriptionListener
extends Listener

Interface to be implemented in order to handle the Subscription Lifecycle.

This interface is bound to subscriptions created by Context.makeSubscription().
It may be retrieved by CommunicationLifeCycle.getListener().

Method Summary

void | onSubscriptionldle(SubscriptionldleEvent event)
Called when the flow of historical data is finished and the start of actual data is starting.

void [onSubscriptionNotify(SubscriptionNotifyEvent event)
Called when an actual or historical data is available or when the server—-answer of a
Subscription.refreshEntity is available.

void |onSubscriptionStart(SubscriptionStartEvent event)
Called when the server—answer to the Subscription.start() is available.

void | onSubscriptionStop(SubscriptionStopEvent event)
Called when the server—answer to the Subscription.stop() is available.

Method Detail

onSubscriptionStart
void onSubscriptionStart(SubscriptionStartEvent event)

Called when the server—answer to the Subscription.start() is available.

206 it.list.jft.event Interface SubscriptionListener

mailto:ftapi@list-group.com

it.list.jft.eventinterface SubscriptionListener @ I.I ST

If the server result is Event. RESULT _OK,
then

¢ the server has accepted the subscription.

O the subscription status has changed to Subscription.STATUS_STARTED.

¢ SubscriptionNotifyEvent and/or SubscriptionldleEvent events will be received.
otherwise

¢ the server has rejected the subscription.
O the subscription status has changed to Subscription.STATUS _STOPPED.
¢ any SubscriptionNotifyEvent and/or SubscriptionldleEvent events will never been
received.
In the latter case it is a good practice to release the subscription associated to the event parameter.
Parameters:
event — the server—-answer to the Subscription.start()

onSubscriptionldle

void onSubscriptionldle(SubscriptionldleEvent event)
Called when the flow of historical data is finished and the start of actual data is starting.
In this case:

O the server result is always Event. RESULT_OK.

¢ the subscription status remains Subscription.STATUS _STARTED.
This method is called only if the type of query of the subscription is not
SubscriptionParam.QUERY_TYPE_ON_TIME.

If the type of query of the subscription is SubscriptionParam.QUERY_TYPE_PAST then it is a good
practice to stop the subscription.
Parameters:

event — event marking stop/starting of historical/actual data coming from the server

onSubscriptionNotify
void onSubscriptionNotify(SubscriptionNotifyEvent event)

Called when an actual or historical data is available or when the server—-answer of a
Subscription.refreshEntity is available.

In this case:

O the server result is always Event. RESULT_OK.

¢ the subscription status remains Subscription.STATUS STARTED.

0 the data is available through the various SubscriptionNotifyEvent methods
If this is the server—answer of a refreshEntity then the data available through
SubscriptionNotifyEvent.getEntity() is always complete even if the subscription was opened
in a masked fashion.
Parameters:

it.list.jft.eventinterface SubscriptionListener 207

& I.I ST it.list.jft.eventinterface SubscriptionListener

event — event containing actual/historical data

onSubscriptionStop

void onSubscriptionStop(SubscriptionStopEvent event)

Called when the server—answer to the Subscription.stop() is available.

If the server result is Event. RESULT_OK, then the server has closed the subscription otherwise some
unknow error occured.

In both

cases:

O the subscription status has changed to Subscription.STATUS _STOPPED.
¢ any SubscriptionNotifyEvent and/or SubscriptionldleEvent events will never been

received.

¢ it is a good practice to release the subscription associated to the event parameter.
Parameters:

event — the server—answer to the Subscription.stop()

Submit a bug or feature to FT\API Programming Support

it.list.jft.event
Interface TransactionListener

All Superinterfaces:
Listener

public interface TransactionListener
extends Listener

Interface to be

implemented in order to handle the Transaction Lifecycle.

This interface is bound to transactions created by Context.makeTransaction().
It may be retrieved by CommunicationLifeCycle.getListener().

Method Summary

void

onTransactionQuery(TransactionQueryEvent event)
Called when the server—answer to the Transaction.query() is available.

void

onTransactionSend(TransactionSendEvent event)
Called when the server—answer to the Transaction.send() is available.

208

it.list.jft.eventinterface SubscriptionListener

mailto:ftapi@list-group.com

it.list.jft.eventinterface TransactionListener ‘\-\ I.I ST

Method Detail

onTransactionSend
void onTransactionSend(TransactionSendEvent event)
Called when the server—answer to the Transaction.send() is available.

Depending on the server result (that cannot never be equal to Event. RESULT_OK) the transaction status
changes to:

¢ TransactionEvent. RESULT_FLYING ' Transaction.STATUS FLYING
¢ TransactionEvent. RESULT _COMMITTED ’ Transaction.STATUS COMMITTED
¢ TransactionEvent. RESULT_ABORTED ' Transaction.STATUS_ABORTED
(in this case it is possible to get the reason code that caused the transaction to fail)
¢ TransactionEvent. RESULT_INVALID_TRANSACTION_ID’
Transaction.STATUS ABORTED
¢ Event.RESULT_GENERIC_ERROR ' Transaction.STATUS_ABORTED
If the current transaction status is TransactionEvent.RESULT_FLYING then the server can accept calls
to Transaction.query() otherwise it is a good practice to release the transaction associated to the
event parameter.
Parameters:
event — the server—answer to the Transaction.send()

onTransactionQuery
void onTransactionQuery(TransactionQueryEvent event)
Called when the server—answer to the Transaction.query() is available.

Depending on the server result (that cannot never be equal to Event. RESULT_OK) the transaction status
changes to:

O TransactionEvent.RESULT_FLYING ' Transaction.STATUS_FLYING
¢ TransactionEvent.RESULT_COMMITTED ’ Transaction.STATUS_COMMITTED
¢ TransactionEvent.RESULT_ABORTED ' Transaction.STATUS_ABORTED
(in this case it is possible to get the reason code that caused the transaction to fail)
¢ TransactionEvent.RESULT_INVALID_TRANSACTION_ID’
Transaction.STATUS_ABORTED
O Event. RESULT_GENERIC_ERROR ' Transaction.STATUS_ABORTED
If the current transaction status is TransactionEvent.RESULT_FLYING then the server can accept
other calls to Transaction.query() otherwise it is a good practice to release the transaction
associated to the event parameter.
Parameters:
event — the server—answer to the Transaction.query()

Submit a bug or feature to FT\API Programming Support

it.list.jft.eventinterface TransactionListener 209

mailto:ftapi@list-group.com

‘\-\ I.I ST it.list.jft.eventinterface TransactionListener

210 it.list.jft.eventinterface TransactionListener

JFT/Api Application Examples

In this chapter we present 3 applications examples that use JFT/Api:

* Example 1
The first example is the simplest. It show how to create one single connection to a FastTrack MetaMarket
service and one single subscription to a given EntityClass. All received entities on this subscriptions are
written on standard output and then the application terminates.

The application is very simple and small: it does not handle any errors and/or exceptions and it does not ma
any trace.

* Example 2
The second example show how to create two distinct connections at the same FastTrack MetaMarket servic
Two subscriptions are opened on the first connection: these two subscriptions are a few complex because tl
use Mask, partial keys and refreshEntity. Instead on the second connection many transactions will be starte
and/or queried automatically.

* Example 3
This very simple application example open a connection with a MetaMarket service using YAS service
manager, and then it subscribe the first position of the depth of some securities using EntityFilter.

See Also:
JFT/Api Introduction, JFT, JFT Exceptions, JFT Implementation Threads, JFT Synchronization

JFT/Api Application Examples 211

Q I.I ST Example 1

Example 1

The first example is the simplest. It show how to create one single connection to a FastTrack MetaMarket service a
one single subscription to a given EntityClass. All received entities on this subscriptions are written on standard
output and then the application terminates.

The application is very simple and small: it does not handle any errors and/or exceptions and it does not make any
trace.

/*

Description

This application example open a connection with a MetaMarket service
of a given FastTrack server and then it starts a subscription

on FT_C_TRADING_STATE EntityClass.

Every received Entity is written on standard output.

The application terminates when a SubscriptionldleEvent is received.

Example Usage

To compile this example remember to put in the classpath:
— The path of JDK 1.1.x (or following)
— The path of your library JFTApi.jar
— The path of the directory where the metamarket package reside

To launch this example type:
java Examplel

To obtain something like:
elD: HDAT mID: GR sID: Primary p: NOP s: Active pd: NOP t: 73049379
elD: HDAT mID: GR sID: Repos p: NEG s: Active pd: NEG t: 80000057
elD: HDAT mID: GR sID: Retail p: NEG s: Active pd: NEG t: 73049404
elD: HDAT mID: GR sID: Secondary p: NEG s: Active pd: NEG t: 80000074
elD: GAM mID: MOT sID: 1 p: NEG s: Active pd: t: 0
elD: GAM mID: TON sID: 1 p: NEG s: Active pd:
elD: GAM mID: MOT sID: 2 p: NEG s: Active pd:
elD: GAM mID: TON sID: 2 p: NEG s: Active pd:
elD: GAM mID: MOT sID: 3 p: NEG s: Active pd:
elD: GAM mID: TON sID: 3 p: NEG s: Active pd:
elD: GAM mID: MOT sID: 4 p: NEG s: Active pd:
elD: GAM mID: TON sID: 4 p: NEG s: Active pd:

—

f e B S S
oNcleoNoloNaoNe]

Additional Classes (in metamarket package)

In order to profitably use this example there is need for some additional
Java classes in the metamarket package. These classes are:
- MetaMarket It contains global constants (entityClassIDs, keyIDs, etc...)
for all data structures of FastTrack MetaMarket service.
- FT_C_TRADING_STATE Specific EntityClass for the handled trading states.
You can see below a skeleton of this class.
- FT_C_TRADING_PHASE The various enumeration values for fields of FT_C_TRADING_STATE

*/

212 Example 1

Example 1 Q I.I ST

/*

MetaMarket

MetaMarket is the Java class that contains global constants
for all data structures of FastTrack MetaMarket service.

This class contains
- a lot of constants (for all entytClassIDs, keylIDs, etc...)
that may be used to access all data handled by MetaMarket service.
— a method registerAll() that may be used to register all
the EntityClasses of MetaMarket.

In this example we use only 3 EntityClasses:
FT_C_TRADING_STATE, FT_C_ORDER and FT_C_ERROR_INFO
so the only used members of the class MetaMarket are:

public static final int FT_C_TRADING_STATE_ID = 30010; // FT_C_TRADING_STATE id

public static final int FT_C_TRADING_STATEKey =1; //FT_C_TRADING_STATE prim. key
public static void registerAll(); /I to register all EntityClasses of MetaMarket

The FT_C_TRADING_STATE EntityClass

Its entityClassID is FT_C_TRADING_STATE_ID = 30010.
Its primary keyID is FT_C_TRADING_STATEKey =1

and it includes ExchangelD, MarketID and SectionID fields.
Its structure is something like:

class FT_C_TRADING_STATE {

String ExchangelD; // ID of the market place

String MarketID; // ID of the market

String SectionID; // ID of the section

int Phase; // Phase of the security:
/I 0 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_UNDEF
// 1 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_CLOSURE
/I 2 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_PRE_ISSUE
/I 3 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_ISSUE
/I 4 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_PRE_AUCTION
/I'5 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_AUCTION
/16 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_POST_AUCTION
/1 7 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_PRE_TRADING
/I 8 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_TRADING
/I'9 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_POST_TRADING
/110 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_TRADING_AT_LAST
/111 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_TRADING_AFTER_HOUR
/112 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_FAST_MARKET
/113 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_MANAGEMENT
/114 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_NO_OPERATION

int Status; // Status of the section
/0 or FT_C_TRADING_STATUS.FT_C_TRADING_STATUS_Active
// 1 or FT_C_TRADING_STATUS.FT_C_TRADING_STATUS_Suspended
/12 or FT_C_TRADING_STATUS.FT_C_TRADING_STATUS_Frozen

String PhaseDescription; // Description of phase

int Time; /I Time (format: HHMMSSmmm) of last change

}
*/

Example 1 213

& LisT

/*

The FT_C_TRADING_PHASE class

This java class is not an EntityClass.
This class contains
— all enumeration value for the trading phase,

— a method enumAsString that returns a displayable String for a given value.

Its structure is something like:

class FT_C_TRADING_PHASE {

public static final int FT_C_TRADING_PHASE_UNDEF 0
public static final int FT_C_TRADING_PHASE_CLOSURE =
public static final int FT_C_TRADING_PHASE_PRE_ISSUE = 2;
public static final int FT_C_TRADING_PHASE_ISSUE 3;

Example 1

public static final int FT_C_TRADING_PHASE_PRE_AUCTION = 4
public static final int FT_C_TRADING_PHASE_AUCTION = 5;
public static final int FT_C_TRADING_PHASE_POST_AUCTION = 6;
public static final int FT_C_TRADING_PHASE_PRE_TRADING =7
public static final int FT_C_TRADING_PHASE_TRADING = 8;
public static final int FT_C_TRADING_PHASE_POST_TRADING =09;

public static final int FT_C_TRADING_PHASE_TRADING_AT LAST = 10;

public static final int FT_C_TRADING_PHASE_TRADING_AFTER_HOUR = 11;

public static final int FT_C_TRADING_PHASE_FAST _MARKET =12;
public static final int FT_C_TRADING_PHASE_MANAGEMENT =13,
public static final int FT_C_TRADING_PHASE_NO_OPERATION =14,
public static final String enumAsString(int value) { return "an appropriate value"; }
}
*/

/I Effective source—code Examplel starts here.

import it.list.jft.*; / to use the JFT/Api library
import it.list.jft.event.*; // to use the JFT/Api library

import metamarket.*; // to use MetaMarket, FT_C_TRADING_STATE, etc...

abstract class Examplel {
static final int clientID = 67899;

static final String dirPath =""

static final String myOperatorlD = "dario";
static final String myOperatorPass = "*";

static final String host ="194.91.195.234";
static final int port =41005;

static Context context;

public static void main(String[Jargs) {
JFT.THIS.init(JFT.MODE_MULTI_THREAD);
if(true)

JFT.THIS.register(new FT_C_TRADING_STATE());

else // as an expensive alternative
MetaMarket.registerAll();
JFT.THIS.start();
context = JFT.THIS.makeContext();
new ConnectionEx();

214

Example 1

Example 1

/I Class to handle the connection.
class ConnectionEx implements ConnectionListener {
final Connection connection;

ConnectionEx() {

ConnectionParam cp = Examplel.context.makeConnectionParam();

cp.setHost(Examplel.host);

cp.setPort(Examplel.port);

cp.setApplRevision(new int[]{0,0,0});

cp.setApplSignature(12345);

cp.setClientID(Examplel.clientlD);

cp.setConnType(ConnectionParam.CONN_TYPE_TCP);

cp.setUserName(Examplel.myOperatoriD);

cp.setPassword(Examplel.myOperatorPass);

cp.setUserType(ConnectionParam.USER_TYPE_VIEW);

connection = Examplel.context. makeConnection(cp, this);

if(connection.open() != Connection.RESULT_OK)

connection.release(); // good practice

}

public void onConnectionOpen(ConnectionOpenEvent ev) {
if(ev.getResult() == ev.RESULT_OK)
new SubscriptionEx(connection);
else
connection.release(); // good practice

}

public void onConnectionClose(ConnectionCloseEvent ev) {
connection.release(); // good practice

}

public void onConnectionLost(ConnectionLostEvent ev) {
connection.release(); // good practice

}
}

Example 1

S LIST

215

& I.I ST Example 1

/I Class to handle the subscription.

class SubscriptionEx implements SubscriptionListener {

final Subscription subscription;
final Connection connection;

SubscriptionEx(Connection conn) {
connection = conn;
SubscriptionParam sp = Examplel.context.makeSubscriptionParam();
sp.setEntityClassID(MetaMarket.FT_C_TRADING_STATE_ID);
subscription = Examplel.context.makeSubscription(connection, sp, this);
if(subscription.start() != Subscription.RESULT_OK)
subscription.release(); // good practice

}

public void onSubscriptionStart(SubscriptionStartEvent ev){
if(ev.getResult() = ev.RESULT_OK)
subscription.release(); // good practice

}

public void onSubscriptionldle(SubscriptionldleEvent ev){
if(true)
JFT.THIS.release();
else { /[as an expensive alternative
subscription.stop();
subscription.release(); // good practice
connection.close();
connection.release(); // good practice
JFT.THIS.release();
}
}

public void onSubscriptionNotify(SubscriptionNotifyEvent ev){
switch(ev.getAction()) {
case SubscriptionNotifyEvent. ACTION_ENTITY_ADD:
System.out.printin(entityAsString(ev.getEntity()));
break;
case SubscriptionNotifyEvent. ACTION_ENTITY_RWT:
case SubscriptionNotifyEvent. ACTION_ENTITY_DEL:
case SubscriptionNotifyEvent. ACTION_ENTITY_KIL:
default:
break;
}
}

public void onSubscriptionStop(SubscriptionStopEvent ev){
subscription.release(); // good practice

}

String entityAsString(Entity e) {
FT_C_TRADING_STATE ts = (FT_C_TRADING_STATE) e;
return "elD: " + ts.ExchangelD
+"mID: " + ts.MarketID
+"sID: " + ts.SectionID
+"p:" + FT_C_TRADING_PHASE.enumAsString(ts.Phase)
;" + FT_C_TRADING_STATUS.enumAsString(ts.Status)
d: " + ts.PhaseDescription
" +ts.Time;

+"s
+"p
+"t

216 Example 1

Example 2 & LI ST

Example 2

The second example show how to create two distinct connections at the same FastTrack MetaMarket service. Two
subscriptions are opened on the first connection: these two subscriptions are a few complex because they use Mas
partial keys and refreshEntity. Instead on the second connection many transactions will be started and/or queried
automatically.

This example is more complex even because it handles and trace errors and exceptions in a sophisticated way. In
addition all LifeCycle activities are handled at two levels: at the higher level all errors and common actions are
handled, at the lower level the specific actions for the specific activity is taken.

/*

Description

This application example open two connections with a MetaMarket service
of a given FastTrack server, and then:

— Two subscriptions will be started on the first connection:
— The first one is a non masked subscription
on FT_C_ORDER EntityClass:
— All received entities will be written on standard output.
— All received entities matching a given operator will be written on files.
This subscription is never stopped.
— The second one is a partial and masked subscription
on FT_C_TRADING_STATE EntityClass:
— Only the ExchangelD and Phase fields
are subscribed and written on standard output when received.
- In addition many refreshEntity will be requested for each received
entity with Phase field that matches a given phase.
This is done in order to discover and print all fields of these entities.
This subscription is close when all received non masked entities
match the corresponding requested refreshEntity.

— All files *.order and *.order.pending of a given directory are listed.
Each *.order file contains all 14 mandatory fields of FT_C_ORDER EntityClass.
Foreach *.order file (if there is not a corresponding *.order.pending file)
a transaction is sent to the server in order to add a FT_C_ORDER.
Once the transaction is sent its TransactionID is stored
on a corresponding *.order.pending file and this file remains untouched
until the transaction is committed or aborted.
Once the transaction is sent and it's still flying the command-line option "-x"
controls if the transaction must be immediately queried for its status
or if this query must be postponed to the next run of this application.
Foreach *.order file that is couple with a corresponding *.order.pending file
a query for the pending transaction is sent to the server in order
to discover if it is still pending or else it is committed or aborted.
In the first case the application retry the query after a while.
In the two latter cases the file *.order.pending is renamed *.order.done.blabla
because the corresponding transaction is finished.
There are convenient command-line options to control the delay between
two subsequents queries and two subsequents scan of *.order files.

The application terminates when all *.order files are been analyzed.
Please note that this may happens before the two subscriptions terminate
the print of their historical data: i.e. not all data may been received.

*

Example 2 217

Q I.I ST Example 2

/*

Example Usage

To compile this example remember to put in the classpath:
— The path of JDK 1.4.x (or following)
— The path of your library JFTApi.jar
— The path of the directory where the metamarket package reside

To launch this example type:
java Example2 options...

where options are: [-h host] # FastTrack server TCP/IP host
[-p port] # FastTrack server TCP/IP port
[-n serviceName] # FastTrack service hame
[-o opName] # operator's name
[-w opPassword] # operator's password
[-I licPathName] # license file pathname
[-d dirPathName] # directory with xxx.order[.pending] files
[-t traceLevel] # 0<=traceLevel <=5
[-v ON/OFF] # trace verbose
[-s scanDelay] # scan delay (in seconds)
[-g queryDelay] # query delay (in seconds)

[-x ON/OFF] # request to make a query after a send
E.g.
java Example2 —h 194.91.195.1 —p 1234 —o dario —w dario —d c:\tmp -s 5 —g 15 —-x ON
requests

- to talk with FastTrack server on host 194.91.195.1 and port 1234.

- without specifying any service name (there is no "-n ..." option).

- with operator name and password both equals to dario.

- not using any license file (there is no "I ..." option).

- listing the directory C:\tmp.

- using the default trace level TRACE_LEVEL_FATAL=5 (there is no "-t ..." option).
- using the default non verbose trace (there is no "-v ..." option).

- reading a new *.order and/or *.order.pending file every 5 seconds:
i.e. every 5 seconds a send (if there is not a *.order.pending file)
or a query (if there is a *.order.pending file)

will be sent to the server.

- re—sending other query for the same transaction 15 seconds
after a preceding flying (i.e. no commit and no abort) result.

- requesting to automatically send a query after a send.

Additional Classes (in metamarket package)

In order to profitably use this example there is need for some additional
Java classes in the metamarket package. These classes are:
- MetaMarket It contains global constants (entityClassIDs, keyIDs, etc...)
for all data structures of FastTrack MetaMarket service.
- FT_C_ORDER Specific EntityClass for orders handled by MetaMarket.
You can see below a skeleton of this class.
- FT_C_TRADING_STATE Specific EntityClass for the handled trading states.
You can see below a skeleton of this class.
- FT_C_ERROR_INFO Specific EntityClass for the transaction errors communications
between the server and the application.
- FT_C_TRADING_PHASE The various enumeration values for fields of FT_C_TRADING_STATE
etc...

*/

218 Example 2

Example 2 Q I.I ST

/*

MetaMarket

MetaMarket is the Java class that contains global constants
for all data structures of FastTrack MetaMarket service.

This class contains
- a lot of constants (for all entytClassIDs, keylIDs, etc...)
that may be used to access all data handled by MetaMarket service.
— a method registerAll() that may be used to register all
the EntityClasses of MetaMarket.

In this example we use only 3 EntityClasses:
FT_C_TRADING_STATE, FT_C_ORDER and FT_C_ERROR_INFO
so the only used members of the class MetaMarket are:

public static final int FT_C_TRADING_STATE_ID = 30010; // FT_C_TRADING_STATE id
public static final int FT_C_TRADING_STATEKey =1; //FT_C_TRADING_STATE prim. key
public static final int FT_C_ORDER_ID =30014; // FT_C_ORDERid

public static final int FT_C_ORDERKey =1; //FT_C_ORDER primary key

public static void registerAll(); /I to register all EntityClasses of MetaMarket

The FT_C_TRADING_STATE EntityClass

Its entityClassID is FT_C_TRADING_STATE_ID = 30010.
Its primary keyID is FT_C_TRADING_STATEKey = 1

and it includes ExchangelD, MarketID and SectionlID fields.
Its structure is something like:

class FT_C_TRADING_STATE {

String ExchangelD; // ID of the market place

String MarketID; // ID of the market

String SectionID; // 1D of the section

int Phase; /I Phase of the security:
/I 0 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_UNDEF
/' 1 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_CLOSURE
/2 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_PRE_ISSUE
/I 3 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_ISSUE
/I 4 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_PRE_AUCTION
/5 0or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_AUCTION
/I 6 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_POST_AUCTION
/I'7 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_PRE_TRADING
// 8 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_TRADING
/19 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_POST_TRADING
/110 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_TRADING_AT_LAST
//11 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_TRADING_AFTER_HOUR
//12 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_FAST_MARKET
//13 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_MANAGEMENT
//14 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_NO_OPERATION

int Status; // Status of the section
/10 or FT_C_TRADING_STATUS.FT_C_TRADING_STATUS_Active
// 1 or FT_C_TRADING_STATUS.FT_C_TRADING_STATUS_Suspended
/I 2 or FT_C_TRADING_STATUS.FT_C_TRADING_STATUS_Frozen

String PhaseDescription; // Description of phase

int Time; /[Time (format: HHMMSSmmm) of last change

}

*/

Example 2 219

Q I.I ST Example 2

/*

The FT_C_ORDER EntityClass

Its entityClassID is FT_C_ORDER_ID = 30014.
Its primary keyID is FT_C_ORDERKey = 1

and it includes FTSeclID and OrderID fields.
Its structure is something like:

class FT_C_ORDER {
String FTSeclID; /1D of the security
String OrderlID; /I'ID of the order given by the market
String OperatorID; // Operator ID
String MrkOperatorID; // ID of the operator on the destination market
int Verb; /I Verb of the order:
/10 or FT_C_VERB.FT_C_VERB_Buy
/I 1 or FT_C_VERB.FT_C_VERB_Sell
int OrderType; I/l Type of the order
/0 or FT_C_ORDER_TYPE.FT_C_ORDER_TYPE_Limit
/1 or FT_C_ORDER_TYPE.FT_C_ORDER_TYPE_Market
/2 or FT_C_ORDER_TYPE.FT_C_ORDER_TYPE_Market_to_limit
/3 or FT_C_ORDER_TYPE.FT_C_ORDER_TYPE_Stop_market
/l 4 or FT_C_ORDER_TYPE.FT_C_ORDER_TYPE_OpeningPrice
/I'5 or FT_C_ORDER_TYPE.FT_C_ORDER_TYPE_Stop_limit
/6 or FT_C_ORDER_TYPE.FT_C_ORDER_TYPE_Subscription
int QtyParameter; // Parameter to choose if the whole quantity of the
/I quantity must be matched at the same time
/10 or FT_C_QTY_PARAMETER.FT_C_QTY_PARAMETER_Default
/I 1 or FT_C_QTY_PARAMETER.FT_C_QTY_PARAMETER_AIl_or_None
int TimelnForce; [/ Parameter to determine the life of the order
/10 or FT_C_TIMEINFORCE.FT_C_TIMEINFORCE_Default
/l'1 or FT_C_TIMEINFORCE.FT_C_TIMEINFORCE_Day
/I 2 or FT_C_TIMEINFORCE.FT_C_TIMEINFORCE_Good_till_Date
/3 or FT_C_TIMEINFORCE.FT_C_TIMEINFORCE_Good_till_Cancel
/I 4 or FT_C_TIMEINFORCE.FT_C_TIMEINFORCE_Immediate_or_Cancel
/I'5 or FT_C_TIMEINFORCE.FT_C_TIMEINFORCE_Good_till_Maturity
/I 6 or FT_C_TIMEINFORCE.FT_C_TIMEINFORCE_Good_till_Hour
/I 7 or FT_C_TIMEINFORCE.FT_C_TIMEINFORCE_Cancel_after_Filled
int ValidityDate; // Date (format: AAAAMMDD) of the end of the order's validity
int Status; /I Status of the order
/10 or FT_C_ORDER_STATUS.FT_C_ORDER_STATUS_Active
/1 or FT_C_ORDER_STATUS.FT_C_ORDER_STATUS_PartFilled
/I 2 or FT_C_ORDER_STATUS.FT_C_ORDER_STATUS_CompFilled
/I 3 or FT_C_ORDER_STATUS.FT_C_ORDER_STATUS_Cancelled
/I 4 or FT_C_ORDER_STATUS.FT_C_ORDER_STATUS_Suspended
/I 5 or FT_C_ORDER_STATUS.FT_C_ORDER_STATUS_CancelledByGov
/1 6 or FT_C_ORDER_STATUS.FT_C_ORDER_STATUS_Stopped
/I 7 or FT_C_ORDER_STATUS.FT_C_ORDER_STATUS_Submitted
/I8 or FT_C_ORDER_STATUS.FT_C_ORDER_STATUS_Rejected
/9 or FT_C_ORDER_STATUS.FT_C_ORDER_STATUS_DeletedByEdit
double Price; /I Limit price of the order
double Qty; /I Quantity of the order
double StopPrice; /I Price that triggers a stop order
int TriggerMechanism;// Activaction rule for stop orders
/0 or FT_C_STOP_TRIGGER_MECHANISM
/I .FT_C_STOP_TRIGGER_MECHANISM_BestPrice
/I'1or FT_C_STOP_TRIGGER_MECHANISM
/I .FT_C_STOP_TRIGGER_MECHANISM_LastPrice

*

220

Example 2

Example 2

/*

The FT_C_ERROR_INFO EntityClass

Its entityClassID is FT_C_ERROR_INFO_ID = 30050.
It does not have any key.
Its structure is something like:

class FT_C_ERROR_INFO {
int ReasonCode;
String ErrorString;

}

The FT_C_TRADING_PHASE class

This java class is not an EntityClass.
This class contains

- all enumeration value for the trading phase,

— a method enumAsString that returns a displayable String for a given value.
Its structure is something like:

class FT_C_TRADING_PHASE {
public static final int FT_C_TRADING_PHASE_UNDEF =0
public static final int FT_C_TRADING_PHASE_CLOSURE =
public static final int FT_C_TRADING_PHASE_PRE_ISSUE =
public static final int FT_C_TRADING_PHASE_ISSUE = 3;
public static final int FT_C_TRADING_PHASE_PRE_AUCTION = 4,
public static final int FT_C_TRADING_PHASE_AUCTION = 5
public static final int FT_C_TRADING_PHASE_POST_AUCTION = 6;
public static final int FT_C_TRADING_PHASE_PRE_TRADING =7
public static final int FT_C_TRADING_PHASE_TRADING = 8;
public static final int FT_C_TRADING_PHASE_POST_TRADING =9
public static final int FT_C_TRADING_PHASE_TRADING_AT_LAST =10;
public static final int FT_C_TRADING_PHASE_TRADING_AFTER_HOUR = 11;

public static final int FT_C_TRADING_PHASE_FAST MARKET =12;
public static final int FT_C_TRADING_PHASE_MANAGEMENT =13;
public static final int FT_C_TRADING_PHASE_NO_OPERATION = 14;

public static final String enumAsString(int value) { return "an appropriate value"; }

*/

Example 2

& LisT

221

@ I.I ST Example 2

/I Effective source—code Example2 starts here.

import java.text.SimpleDateFormat;

import java.util.Arrays;

import java.util.Date;

import java.io.FileOutputStream;

import java.io.FilenameFilter;

import java.io.BufferedReader;

import java.io.PrintWriter;

import java.io.FileReader;

import java.io.File;

import it.list.jft.*; I to use the JFT/Api library
import it.list.jft.event.*; // to use the JFT/Api library
import metamarket.*; // to use MetaMarket, FT_C_ORDER, FT_C_TRADING_STATE, etc...

class Example2 extends UtilityExample implements Runnable {

static final String O_SUFFIX =".order";
static final String O_SUFFIX_READ = O_SUFFIX + ".read";
static final String T_SUFFIX =".pending";

static final String T_SUFFIX_DONE =".done." + System.currentTimeMillis();

static final String EXCHANGE_ID ="HDAT";

static final int SUBS_CLIENT_ID = 67890;

static final int TRANS_CLIENT_ID= 67891,

static final int PHASE_TRADING = FT_C_TRADING_PHASE.
FT_C_TRADING_PHASE_TRADING,;

static final ThreadGroup THREAD_GROUP = new ThreadGroupExample();

static String licPath = null;

static String dirPath ="c:\\";

static String myOperatorlD = "dario";

static String myOperatorPass = "*";

static String host = "metamarket.fasttrack.com";

static String service =null;

static int port =1234;

static int delayScanSecs = 10;

static int delayQuerySecs = 3;

static int traceLevel =JFT.TRACE_LEVEL_FATAL,;
static boolean queryAfterSend = false;

static boolean verbose = false;

static Context context = null;

222 Example 2

Example 2 @ I.I ST

public static void main(String[Jargs) {
handleArgs(args);
new Thread(THREAD_GROUP, new Example2(), "main").start();

public void run() {
JFT.THIS.init(JFT.MODE_MULTI_THREAD);
JFT.THIS.setTrace(true);
JFT.THIS.setTracelLevel(traceLevel);
JFT.THIS.setTraceMode(this);
if(true) {
JFT.THIS.register(new FT_C_ORDER());
JFT.THIS.register(new FT_C_TRADING_STATE());
JFT.THIS.register(new FT_C_ERROR_INFO());
} else /I as an expensive alternative
MetaMarket.registerAll();
JFT.THIS.start();
context = JFT.THIS.makeContext();
new ConnectionForSubscriptions();
new ConnectionForTransactions();

/I Just a remind on usage...

static void usage() {
final String[Jusage=
{"Usage: java Example options...",
"options: [~h host] # FastTrack server TCP/IP host",
" [-p port] # FastTrack server TCP/IP port",
[-n serviceName] # FastTrack service name”,
[-0 opName] # operator's name",
[-w opPassword] # operator's password",
[l licPathName] # license file pathname”,
[-d dirPathName] # directory with xxx.order[.trans] files",
[t traceLevel] # 0 <= tracelLevel <=5",
" [-v ON/OFF] # trace verbose",
" [-s scanDelay] # scan delay (in seconds)",
[-q queryDelay] # query delay (in seconds)",
[-x ON/OFF] # request to make a query after a send"};
for(int i=0; i<usage.length; i++)
System.out.printin(usageli]);
System.exit(0);
}

Example 2 223

& I.I ST Example 2

/I Parse command-line options.

static void handleArgs(String[]args) {
try {

for(int i=0; i<args.length; i+=2)
if(args[i].equals("-h"))
host = args|[i+1];
else if(argsl[i].equals("—p"))
port = Integer.parselnt(argsli+1]);
else if(argsli].equals("-n"))
service = args[i+1];
else if(args][i].equals("-0"))
myOperatorID = args[i+1];
else if(args[i].equals("-w"))
myOperatorPass = args[i+1];
else if(argsli].equals("-1"))
licPath = args][i+1];
else if(argsl[i].equals("-t"))
traceLevel = Integer.parselnt(args[i+1]);
else if(argsl[i].equals("-d"))
dirPath = argsJ[i+1];
else if(argsli].equals("-v"))
verbose = argsJ[i+1].compareTolgnoreCase("ON") == 0;
else if(args[i].equals("-s"))
delayScanSecs = Integer.parselnt(args[i+1]);
else if(argsl[i].equals("-g"))
delayQuerySecs = Integer.parselnt(args[i+1]);
else if(argsli].equals("-x"))

queryAfterSend = args][i+1].compareTolgnoreCase("ON") == 0;

else
throw new lllegalArgumentException();
if(args.length ==

|| host.length() == 0
|| port <=0
|| service != null && service.length() ==
|| myOperatorID.length() == 0
|| myOperatorPass.length() == 0
|| traceLevel < JFT.TRACE_LEVEL_DEBUG
|| traceLevel > JFT.TRACE_LEVEL_FATAL
|| licPath != null && ! new File(licPath).canRead()
|| ! new File(dirPath).isDirectory()
|| delayScanSecs < 0
|| delayQuerySecs < 0)

throw new lllegalArgumentException();

} catch(Exception e) {
usage();

}
}
}

224

Example 2

Example 2 @ I.I ST

/I Common superclass for all connections.

abstract class ConnectionExample extends UtilityExample
implements ConnectionListener {

final Connection connection;

ConnectionExample(int connectionUserType, int clientID) {
ConnectionParam cp = Example2.context.makeConnectionParam();
cp.setHost(Example2.host);
cp.setPort(Example2.port);
cp.setService(Example2.service);
cp.setApplRevision(new int[}{0,0,0});
cp.setApplSignature(12345);
cp.setAuthFile(Example2.licPath == null ? null : new File(Example2.licPath));
cp.setClientID(clientID);
cp.setConnType(ConnectionParam.CONN_TYPE_TCP);
cp.setUserName(Example2.myOperatorID);
cp.setPassword(Example2.myOperatorPass);
cp.setUserType(connectionUserType);
connection = Example2.context.makeConnection(cp, this);

int res = connection.open();
trace(res);

if(res != Connection.RESULT_OK)

connection.release(); // good practice

}

public void onConnectionOpen(ConnectionOpenEvent ev) {
int res = ev.getResult();
trace(res);
if(res == ev.RESULT_OK) {
intimrkRev = ev.getMarketRevision();
trace("csID: " + ev.getClientServicelD() + " bsID: " + ev.getBusinessServicelD()
+ " date: " + UtilityExample.sdf.format(ev.getSystemDateTime())
+"FTID: " + ev.getFTID() + " env: " + ev.getEnvironment()
+ " mrkRev: " + mrkRev[0] + "." + mrkRev[1] + "." + mrkReV[2]);
} else
connection.release(); // good practice

}

public void onConnectionClose(ConnectionCloseEvent ev) {
trace(ev.getResult());
connection.release(); // good practice

}

public void onConnectionLost(ConnectionLostEvent ev) {
trace(ev.getResult());
connection.release(); // good practice
}
}

Example 2 225

@ I.I ST Example 2

Il A specific connection: it handles many subscriptions.

class ConnectionForSubscriptions extends ConnectionExample {

ConnectionForSubscriptions() {
super(ConnectionParam.USER_TYPE_VIEW, Example2.SUBS_CLIENT_ID);

}

public void onConnectionOpen(ConnectionOpenEvent ev) {
super.onConnectionOpen(ev); // call the overridden method
if(ev.getResult() == ev.RESULT_OK) {
new SubscriptionOrder(connection);
new SubscriptionTradingState(connection);

226 Example 2

Example 2 @ I.I ST

/I Common superclass for all subscriptions.

abstract class SubscriptionExample extends UtilityExample

implements SubscriptionListener {
final Subscription subscription;

SubscriptionExample(Connection connection) {
subscription = Example2.context.makeSubscription(connection,
makeSubscriptionParam(), this);
int res = subscription.start();
trace(res);
if(res !'= Subscription.RESULT_OK)
subscription.release(); // good practice

}

abstract SubscriptionParam makeSubscriptionParam();
abstract String entityAsString(Entity e);

public void onSubscriptionStart(SubscriptionStartEvent ev){
trace("Result=" + ev.getResult() +
(ev.getResult() == ev.RESULT_OK ?
" version: " + ev.getEntityClassVersionOnServer() +
"reset: " + ev.isEntityClassReset() : "));
if(ev.getResult() = ev.RESULT_OK)
subscription.release(); // good practice

}

public void onSubscriptionldle(SubscriptionldleEvent ev){
trace(ev.getResult());

}

public void onSubscriptionNotify(SubscriptionNotifyEvent ev){
switch(ev.getAction()) {
case SubscriptionNotifyEvent. ACTION_ENTITY_ADD:
case SubscriptionNotifyEvent. ACTION_ENTITY_RWT:
trace((ev.getAction() == ev.ACTION_ENTITY_ADD ? "ADD" : "RWT")
+ " Masked: " + ev.isMasked() + " " + entityAsString(ev.getEntity()));
break;
case SubscriptionNotifyEvent. ACTION_ENTITY_DEL:
trace("DEL KeylID: " + ev.getKeylID());
break;
case SubscriptionNotifyEvent. ACTION_ENTITY_KIL:
if(ev.getkeylD() <= 0)
trace("KIL ClassReset — New Version: " + ev.getTimeStamp().getDateTime());
else
trace("KIL KeylID: " + ev.getKeyID());
break;
}
}

public void onSubscriptionStop(SubscriptionStopEvent ev){
trace(ev.getResult());
subscription.release(); // good practice
}
}

Example 2 227

& I.I ST Example 2

Il A specific subscription: it handles FT_C_ORDER.

class SubscriptionOrder extends SubscriptionExample {

}

SubscriptionOrder(Connection connection) {
super(connection);

SubscriptionParam makeSubscriptionParam() {

}

SubscriptionParam sp = Example2.context.makeSubscriptionParam();
sp.setEntityClassID(MetaMarket.FT_C_ORDER_ID);
return sp;

String entityAsString(Entity e) {

}

}

}
}

FT_C_ORDER 0 = (FT_C_ORDER) €;
return (0.OperatorID.equals(Example2.myOperatorID) ? " : "NO_OWNER")
+" OrderlD:" + 0.OrderlD
+"FTSecID:" +0.FTSecIlD
+ " OperatorlD: " + 0.OperatorID

+ " Price: " + 0.Price

+" Qty: " + 0.Qty

+ " Verb: " + FT_C_VERB.enumAsString(o.Verb)
+ " ValidityDate: " + o.ValidityDate;

public void onSubscriptionNotify(SubscriptionNotifyEvent ev){

super.onSubscriptionNotify(ev); // call the overridden method
FT_C_ORDER o = (FT_C_ORDER) ev.getEntity();
if(! 0.OperatorID.equals(Example2.myOperatorID))
writeOrder(0);

void writeOrder(FT_C_ORDER 0) {
PrintWriter pw = null;
try {
pw = new PrintWriter(new FileOutputStream(new File(
Example2.dirPath, 0.FTSecID + Example2.0_SUFFIX_READ)));
pw.println(o.FTSeclID);
pw.printin(o.OrderID);
pw.printin(o.OperatorID);
pw.printin(o.MrkOperatorID);
pw.printin(o.Verb);
pw.printin(o.OrderType);
pw.println(o.QtyParameter);
pw.printin(o.TimelnForce);
pw.printin(o.ValidityDate);
pw.printin(o.Status);
pw.printin(o.Price);
pw.printin(o.Qty);
pw.printin(o.StopPrice);
pw.printin(o.TriggerMechanism);
trace("order file written.");
} catch(Exception e) {
trace(e);
} finally {
try {pw.close();} catch(Exception e) {}
}

228

Example 2

Example 2

/I Another specific subscription: it handles FT_C_TRADING_STATE.
class SubscriptionTradingState extends SubscriptionExample {
int counter; // count the # of refreshEntity requested

SubscriptionTradingState(Connection connection) {
super(connection);

}

SubscriptionParam makeSubscriptionParam() {

Mask m = JFT.THIS.makeEmptyMask(MetaMarket.FT_C_TRADING_STATE_ID);

m.addFieldByName("ExchangelD"); // primary key field
m.addFieldByName("MarketID"); // primary key field
m.addFieldByName("SectionID"); // primary key field
m.addFieldByName("Phase"); // what I'm searching!
SubscriptionParam sp = Example2.context.makeSubscriptionParam();
sp.setEntityClassID(MetaMarket.FT_C_TRADING_STATE_ID);
sp.setMask(m);

sp.setQueryType(sp.QUERY_TYPE_SET);

FT_C_TRADING_STATE ts = new FT_C_TRADING_STATE();
ts.ExchangelD = Example2. EXCHANGE_ID;

sp.setEntityKey(ts.getPartialEntityKey(MetaMarket.FT_C_TRADING_STATEKey, 1));

return sp;

}

String entityAsString(Entity e) {
FT_C_TRADING_STATE ts = (FT_C_TRADING_STATE) e;
return "ExchangelD: " + ts.ExchangelD // in mask and partial key subscribed
+ " MarketID: "+ ts.MarketID /I in mask
+ " SectionID: " + ts.SectionID /l in mask

+"Phase:" +FT_C_TRADING_PHASE.enumAsString(ts.Phase)// in mask

+ " Status: "+ FT_C_TRADING_STATUS.enumAsString(ts.Status)
+ " PhaseDesc: " + ts.PhaseDescription
+"Time: " + ts.Time;

}

public void onSubscriptionldle(SubscriptionldleEvent ev){
super.onSubscriptionldle(ev); // call the overridden method
checkStop();

}

public void onSubscriptionNotify(SubscriptionNotifyEvent ev){
super.onSubscriptionNotify(ev); // call the overridden method
if(ev.isMasked()) {
FT_C_TRADING_STATE ts = (FT_C_TRADING_STATE) ev.getEntity();
if(ts.Phase == Example2.PHASE_TRADING) {
int res = subscription.refreshEntity(ts.getFullEntityKey(ev.getKeyID()));
trace(res);
if(res == subscription.RESULT_OK)
counter++;

}else {
counter—-;
checkStop();

}

}

Example 2

S LIST

229

& I.I ST Example 2

void checkStop() {
if(counter <= 0) { // Now I'm no more interested in this subscription
int res = subscription.stop();

trace(res);
subscription.release(); // good practice

}

}
}

/I Another specific connection: it handles many transactions.

class ConnectionForTransactions extends ConnectionExample
implements FilenamekFilter, Runnable{
String[Jfiles;

ConnectionForTransactions() {
super(ConnectionParam.USER_TYPE_TRADER, Example2. TRANS_CLIENT_ID);

}

public void onConnectionOpen(ConnectionOpenEvent ev) {
super.onConnectionOpen(ev); // call the overridden method
if(ev.getResult() == ev.RESULT_OK) {
files = new File(Example2.dirPath).list(this);
int n = (files == null) ? 0 : files.length;
trace(n + " orders to be sent or monitored");
if(n > 1)
Arrays.sort(files);
new Thread(Example2. THREAD_GROUP, this, "listing").start();
}

}

public boolean accept(File dir, String name) {
return name.endsWith(Example2.0_SUFFIX) && ! name.startsWith(Example2.0_SUFFIX);

}

public void run() {
sleep(Example2.delayScanSecs);

if(files = null)
for(int i=0; i<files.length; i++)
try {

String filename = files[i] + Example2.T_SUFFIX;
File f = new File(Example2.dirPath, filename);
if(f.canRead()) {
trace("analyzing file " + filename + ": pending trans. to be monitored");
new TransactionPending(connection, files[i]);
}else {
trace("analyzing file " + files[i] + ": new transaction to be created");
new TransactionNew(connection, files[i]);
}

sleep(Example2.delayScanSecs);
} catch(Exception e) {
trace(i+" ->"+e);
}
JFT.THIS.release();
trace("JFT library released —> application going to die");
/I no need to explicitly call System.exit() here !

230 Example 2

Example 2 @ I.I ST

/I Common superclass for all transactions.

abstract class TransactionExample extends UtilityExample
implements TransactionListener, Runnable {

final Transaction transaction;
final String filename;
int counter;

TransactionExample(Connection connection, String f) {
super(f);
filename =f;
transaction = Example2.context.makeTransaction(connection,
makeTransactionParam(), this);
tidWrite();

abstract TransactionParam makeTransactionParam();

String reasonAsString(TransactionEvent ev) {
int reason = ev.getReasonCode();
FT_C_ERROR_INFO ei = (FT_C_ERROR_INFO) ev.getEntity();
return reason ==07?"":
(" reason: " + reason + (ei ==null ? " : " —>" + ei.ErrorString));

}

void onTransaction(TransactionEvent ev, String whoami) {
int st = transaction.getStatus();
trace(whoami
+ ev.getResult()
+ (st == transaction.STATUS_FLYING ? " FLYING"
: (st == transaction.STATUS_ABORTED ? " ABORTED"
: (st == transaction.STATUS_COMMITTED ? " COMMITTED" : " " + st)))
+ reasonAsString(ev));
if(st == transaction.STATUS_FLYING)
if(Example2.queryAfterSend)
queryDelayed();
else
transaction.release(); // Now I'm no more interested in this transaction
else
destroy();

}

public void onTransactionSend(TransactionSendEvent ev) {
onTransaction(ev, "onTransactionSend —>");

}

public void onTransactionQuery(TransactionQueryEvent ev) {
onTransaction(ev, "onTransactionQuery —>");

}

void destroy() {
tidRemove();
transaction.release(); // Now I'm no more interested in this transaction

}

void query() {
int res = transaction.query();
trace(res);
if(res != transaction.RESULT_OK)
destroy();

}

Example 2 231

& I.I ST Example 2

void queryDelayed() {
new Thread(Example2. THREAD_GROUP, this,
"query " + (++counter) + " on " + filename).start();

}

TransactionID tidRead() {
BufferedReader in = null;
try {
in = new BufferedReader(new FileReader(new File(Example2.dirPath,
flename + Example2.T_SUFFIX)));
TransactionID tid = JFT.THIS.makeTransactionID(
Integer.parselnt(in.readLine()),
Integer.parselnt(in.readLine()),
Integer.parselnt(in.readLine()),
JFT.THIS.makeTimeStamp(Integer.parselnt(in.readLine()),
Integer.parselnt(in.readLine())));
trace("transaction file read.");
return tid;
} catch(Exception e) {
trace(e);
return null;
} finally {
try {in.close();} catch(Exception e) {}
}

}

void tidWrite() {
TransactionID tid = transaction.getTransactionID();
PrintWriter pw = null;
try {
pw = new PrintWriter(new FileOutputStream(new File(Example2.dirPath,
filename+Example2.T_SUFFIX)));
pw.printin(tid.getClientID());
pw.printin(tid.getClientServicelD());
pw.printin(tid.getBusinessServicelD());
pw.printin(tid.getTimeStamp().getDateTime());
pw.printin(tid.getTimeStamp().getProg());
trace("transaction file written.");
} catch(Exception e) {
trace(e);
} finally {
try {pw.close();} catch(Exception e) {}
}

}

void tidRemove() {
File oldF = new File(Example2.dirPath, filename + Example2.T_SUFFIX);
File newF = new File(Example2.dirPath, filename + Example2.T_SUFFIX_DONE);
boolean ok = oldF.renameTo(newF);
trace("transaction file renamed: " + ok);

}

public void run(){
try {
sleep(Example2.delayQuerySecs);
query();
} catch(Exception e) {
trace(e);
}
}
}

232 Example 2

Example 2

class TransactionNew extends TransactionExample { // specific new transaction

TransactionNew(Connection connection, String f) {
super(connection, f);
int res = transaction.send();
trace(res);
if(res != transaction.RESULT_OK)
destroy();

}

TransactionParam makeTransactionParam() {
TransactionParam tp = Example2.context.makeTransactionParam();
tp.setAction(TransactionParam.ACTION_ENTITY_ADD);
tp.setEntity(readOrder());
tp.setKeylD(MetaMarket.FT_C_ORDERKey);
return tp;

}

FT_C_ORDER readOrder() {
BufferedReader in = null;

try {
FT_C_ORDER order =new FT_C_ORDER();

in = new BufferedReader(new FileReader(new File(Example2.dirPath, filename)));

order.FTSeclID = in.readLine();

order.OrderlD =in.readLine();

order.OperatorID = in.readLine(); // overwritten below !
order.MrkOperatorID = in.readLine();

order.Verb = Integer.parselnt(in.readLine());
order.OrderType = Integer.parselnt(in.readLine());
order.QtyParameter = Integer.parselnt(in.readLine());
order.TimelnForce = Integer.parselnt(in.readLine());
order.ValidityDate = Integer.parselnt(in.readLine());
order.Status = Integer.parselnt(in.readLine());
order.Price = Double.parseDouble(in.readLine());
order.Qty = Double.parseDouble(in.readLine());
order.StopPrice = Double.parseDouble(in.readLine());

order.TriggerMechanism = Integer.parselnt(in.readLine());

order.OperatorID = Example2.myOperatorID; // overwritten with the right value !

trace("file read");
return order;
} catch(Exception €) {
trace(e);
return null;

} finally {
try {in.close();} catch(Exception e) {}
}

}
}

class TransactionPending extends TransactionExample { // specific past pending transact.

TransactionPending(Connection connection, String f) {
super(connection, f);
query();
}

TransactionParam makeTransactionParam() {
TransactionParam tp = Example2.context.makeTransactionParam();
tp.setPendingTransactionID(tidRead());
return tp;

Example 2

S LIST

233

& I.I ST Example 2

/I Common superclass for all classes of this example.

abstract class UtilityExample implements Tracer {
static final SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");
final String specificName;

UtilityExample() {

specificName = "";

}

UtilityExample(String name) {
specificName = "<" + name + ">";

}

void internalTrace(String line) {
String m = getClass().getName() + specificName;
Throwable t = new Throwable();
StackTraceElement][] ste = t.getStackTrace();
if(ste |= null && ste.length >= 3) {
m +="." + ste[2].getMethodName();
if(Example2.verbose) {
String fn = ste[2].getFileName();
int In = ste[2].getLineNumber();
m+=""+({fn==null 2™ :fn) + In<0 2™ :"" +1In) +")";

}

}

JFT.THIS.trace(m, JFT.TRACE_LEVEL_FATAL, line);
/I In this simple example the level is always TRACE_LEVEL_FATAL
/I so we will see our application trace
/I whichever "-t ..." command-line option was choosen.

void trace(String message) { internalTrace(message); }
void trace(int res) {internalTrace("Result=" + res); }
void trace(Exception €) { internalTrace("Exception: " + e); }

public void onTrace(Date t, String m, int |, String ms) {
String v = Example2.verbose ?

sdf.format(t) + " " + | + " [" + Thread.currentThread().getName() + "] " : ",
System.out.printin(v + “[" + m + "] " + ms);

}

void sleep(int intervalSecs) {
try {
Thread.sleep(intervalSecs * 1000L);

} catch(InterruptedException ie) {
trace(ie);

}

}
}

234 Example 2

Example 3 Q I.I ST

/I Specific ThreadGroup to handle in an uniform way all generated exceptions.

class ThreadGroupExample extends ThreadGroup {

ThreadGroupExample() {
super("Example");
}

public void uncaughtException(Thread t, Throwable e) {
if(e instanceof ThreadDeath)
super.uncaughtException(t, e); // call the overridden method
else {
System.out.printin("Uncaught Exception in thread " + t.getName());
e.printStackTrace(System.out);
System.exit(0);

Example 3

The third example extend the second one adding a query facility.
To use this example you have to compile both second and third examples.

/*

Description

This simple application example open a connection with a MetaMarket service
using YAS service manager, and then it subscribe orders
of some securities using EntityFilter.

*/

/I Effective source—code Example3 starts here.

import java.io.*;

import it.list.jft.*; // to use the JFT/Api library

import it.list.jft.event.*; // to use the JFT/Api library

import metamarket.*; // to use MetaMarket, FT_C_ORDER, FT_C_TRADING_STATE, etc...
public class Example3 implements ConnectionListener, SubscriptionListener, FilterListener

{

Context context;
Connection connection;
EntityFilter filter;

public Example3()

Example 3 235

@ I.l ST Example 3

236

}

JFT.THIS.init(JFT.MODE_MULTI_THREAD);
System.out.println("Starting...");

JFT.THIS.setTrace(true);
JFT.THIS.setTraceLevel(JFT.TRACE_LEVEL_DEBUG);

/I uncomment this line for debug trace on system out

/I JFT.THIS.setTraceMode(true, new PrintWriter(System.out));

/I use this if you want to print trace on a file

/I JFT.THIS.setTraceMode(true, new File("C:\TRACE_Test.txt"));
/I register MetaMarket order class

JFT.THIS.register(new FT_C_ORDER());
JFT.THIS.start();

context = JFT.THIS.makeContext();
ConnectionParam p = context.makeConnectionParam();

/I change following parameters to fit your configuration
p.setHost("194.91.195.36");

p.setPort(37000);

p.setUserName("marco");

p.setPassword("*");

p.setClientID(12345);
p.setUserType(ConnectionParam.USER_TYPE_TRADER);

p.setService("METAMARKET");
connection = context.makeConnection(p, this);

System.out.printin("Open connection result: " + connection.open());

public static void main(String[] args)

{

}

Example3 test = new Example3();

/I connection listener interface

public void onConnectionOpen(ConnectionOpenEvent event)

{

System.out.println(event);

Example 3

Example 3 @ I.I ST
/I crete EntityFilter

FilterParam filterparam = context.makeFilterParam();

filterparam.setEntityClassID(MetaMarket.FT_C_ORDER_ID);
filterparam.setType(EntityFilter. TYPE_ENTITYFILTER);

filter = (EntityFilter)context.makeFilter(connection, filterparam, this);

System.out.printin("Filter Create Result: " + filter.create());

}

public void onConnectionClose(ConnectionCloseEvent event)

{

System.out.println(event);

}

public void onConnectionLost(ConnectionLostEvent event)

{

System.out.printin(event);

}

/I filter listener interface
public void onFilterCreate(FilterCreateEvent event)

{

System.out.printin(event);

if (event.getResult() == FilterCreateEvent.RESULT_OK)

{
FT_C_ORDER order = new FT_C_ORDER();

SubscriptionParam param = context.makeSubscriptionParam();
param.setEntityClassID(MetaMarket.FT_C_ORDER_ID);
param.setFilter(filter);
param.setEntityKey(order.getFullEntityKey(MetaMarket.FT_C_ORDERKey));

Subscription sub = context.makeSubscription(connection, param, this);

System.out.printin("Subscribing Result FT_C_ORDER: " + sub.start());

}
}

public void onFilterSet(FilterSetEvent event)

{

System.out.println(event);

}

public void onFilterDestroy(FilterDestroyEvent event)

{

System.out.printin(event);

}

I/l subscription listener interface

public void onSubscriptionStart(SubscriptionStartEvent event)

{

System.out.printin(event);

Example 3 237

=

238

I.I ST Example 3

if (event.getResult()==SubscriptionStartEvent. RESULT_OK)

{

FT_C_ORDER order = new FT_C_ORDER();

order.FTSecID = "BITMTAACE";

filter.add(order.getPartialEntityKey(MetaMarket.FT_C_ORDERKey,1));

order.FTSecID = "BITMTAF";

filter.add(order.getPartialEntityKey(MetaMarket.FT_C_ORDERKey,1));

order.FTSecID = "BITMTACSP";

filter.add(order.getPartialEntityKey(MetaMarket.FT_C_ORDERKey,1));

filter.flush();

/I now you will receive the order of this three
security only

}

public void onSubscriptionStop(SubscriptionStopEvent event)

{

System.out.printin(event);

}

public void onSubscriptionldle(SubscriptionidleEvent event)

{

System.out.println(event);

}

public void onSubscriptionNotify(SubscriptionNotifyEvent event)
{

System.out.printin(event);

Example 3

To Contact Us

Any comments or requests for clarifications are welcome.

Email
Marketing: marketing@list—-group.com
General Support: helpdesk@list—-group.com

FT/API Programming Support: ftapi@Ilist—-group.com

Website

www.list—group.com

Offices
List SpA

Via Pietrasantina, 123 56122 Pisa - Italy

Tel. +39 050 80 01 51 Fax +39 050 80 01 701
*kkkkk

Foro Buonaparte, 76 20121 Milano - Italy

Tel. +39 02 80 28 91 Fax +39 02 80 51 040
*kkkkk

Via Cavour, 24 10123 Torino - Italy

Tel. +39 011 81 01 211 Fax +39 011 83 58 83
*kkkkk

Via Camporegio, 5 53100 Siena - Italy

Tel. +39 0577 05741 Fax +39 0577 057499
*kkkkk

Via Carducci, 20 34125 Trieste - Italy

Tel. +39 040 985 100 Fax +39 040 985 1099

To Contact Us

239

mailto:marketing@list-group.com
mailto:helpdesk@list-group.com
mailto:ftapi@list-group.com
http://www.list-group.com

=

240

I.I ST To Contact Us

FMR Consulting SpA
Piazza Duomo, 57 27058 Voghera (PV) - Italy

Tel + 39 0383 64 35 11 - Fax + 39 0383 64 35 10

List UK Ltd
6th floor, 76 Cannon Street — London EC4N 6AE - UK

Tel. +44 (0)203 393 43 70 - Fax +44 (0)203 393 43 72

List USA Inc
5 Penn Plaza, Suite 3600 — New York, NY, 10119 USA

Tel. +1 212 83 51 622 — Fax +1 212 84 96 901

List Polska SA
Plac Trzech Krzyzy, 3 — 00-535 Warszawa

Tel +48 22 584 70 11— Fax +48 22 584 70 14

List Technology Iberica SA
C/Zurbano, 5 - 1° - 28010 Madrid

Tel +34 917 88 82 00 — Fax +34 917 88 82 32

List Sdn Bhd
Level 40, Tower 2 — Petronas Twin Towers — Kuala Lumpur City Centre

Tel +603 21684407 Fax +603 21684201

To Contact Us

	Table of Contents
	 JFT/Api
	 JFT/Api Introduction
	FastTrack Overview
	System Architecture Overview
	Access points
	JFT/Api Access Point

	Data Distribution
	Publish
	Subscribe
	Queries
	Transactions
	Connections and Contexts

	JFT/Api Details
	Asynchronous Communication Model
	LifeCycle
	Data Model
	Other Peculiarities
	JFT/Api Entry Point
	 Package it.list.jft
	 Package it.list.jft Description
	 Package it.list.jft Data Model
	 Hierarchy For Package it.list.jft
	 Interface Hierarchy
	 it.list.jft Interface EntityClass
	 it.list.jft Interface Entity
	 it.list.jft Interface EntityField
	 it.list.jft Interface EntityKey
	 it.list.jft Interface LifeCycle
	 it.list.jft Interface CommunicationLifeCycle
	 it.list.jft Interface ActivityLifeCycle
	 it.list.jft Interface EntityClassQuery
	 it.list.jft Interface Filter
	 it.list.jft Interface EntityFilter
	 it.list.jft Interface Query
	 it.list.jft Interface Subscription
	 it.list.jft Interface Transaction
	 it.list.jft Interface Connection
	 it.list.jft Interface MulticastConnection
	 it.list.jft Interface Context
	 it.list.jft Interface JFT
	 it.list.jft Interface Mask
	 it.list.jft Interface Param
	 it.list.jft Interface ConnectionParam
	 it.list.jft Interface EntityClassQueryParam
	 it.list.jft Interface FilterParam
	 it.list.jft Interface MulticastConnectionParam
	 it.list.jft Interface QueryParam
	 it.list.jft Interface SubscriptionParam
	 it.list.jft Interface TransactionParam
	 it.list.jft Interface TimeStamp
	 it.list.jft Interface TransactionID
	 it.list.jft Interface Tracer
	 Package it.list.jft.event
	 Package it.list.jft.event Description
	 Package it.list.jft.event Data Model
	 Hierarchy For Package it.list.jft.event
	 Interface Hierarchy
	 it.list.jft.event Interface Event
	 it.list.jft.event Interface ConnectionEvent
	 it.list.jft.event Interface ConnectionCloseEvent
	 it.list.jft.event Interface ConnectionLostEvent
	 it.list.jft.event Interface ConnectionOpenEvent
	 it.list.jft.event Interface EntityClassQueryEvent
	 it.list.jft.event Interface FilterEvent
	 it.list.jft.event Interface FilterCreateEvent
	 it.list.jft.event Interface FilterDestroyEvent
	 it.list.jft.event Interface FilterSetEvent
	 it.list.jft.event Interface MulticastConnectionEvent
	 it.list.jft.event Interface QueryEvent
	 it.list.jft.event Interface QueryCreateEvent
	 it.list.jft.event Interface QueryDestroyEvent
	 it.list.jft.event Interface QueryNotifyEvent
	 it.list.jft.event Interface QueryRowsEvent
	 it.list.jft.event Interface SubscriptionEvent
	 it.list.jft.event Interface SubscriptionIdleEvent
	 it.list.jft.event Interface SubscriptionNotifyEvent
	 it.list.jft.event Interface SubscriptionStartEvent
	 it.list.jft.event Interface SubscriptionStopEvent
	 it.list.jft.event Interface TransactionEvent
	 it.list.jft.event Interface TransactionQueryEvent
	 it.list.jft.event Interface TransactionSendEvent
	 it.list.jft.event Interface Listener
	 it.list.jft.event Interface ConnectionListener
	 it.list.jft.event Interface EntityClassQueryListener
	 it.list.jft.event Interface FilterListener
	 it.list.jft.event Interface MulticastConnectionListener
	 it.list.jft.event Interface QueryListener
	 it.list.jft.event Interface SubscriptionListener
	 it.list.jft.event Interface TransactionListener

	 JFT/Api Application Examples
	Example 1
	Example 2
	Example 3

	 To Contact Us

